1
|
Seth T, Mishra GP, Chattopadhyay A, Deb Roy P, Devi M, Sahu A, Sarangi SK, Mhatre CS, Lyngdoh YA, Chandra V, Dikshit HK, Nair RM. Microgreens: Functional Food for Nutrition and Dietary Diversification. PLANTS (BASEL, SWITZERLAND) 2025; 14:526. [PMID: 40006785 PMCID: PMC11859409 DOI: 10.3390/plants14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Microgreens are tender, edible seedlings harvested 7-21 days after germination containing a central stem, cotyledons, and true leaves. Known as a fresh, ready-to-eat functional food, they are mostly rich in vitamins, antioxidants, bioactive compounds, and minerals, with distinctive flavors, colors, and textures. These attributes make microgreens a valuable component in nutrition and health research. In countries like India, where low-income households spend 50-80% of their income on food, micronutrient deficiencies are common, particularly among women. Indian women, facing a double burden of malnutrition, experience both underweight (18.7%) and obesity (24.0%) issues, with 57% suffering from anemia. Women's unique health requirements vary across life stages, from infancy to their elderly years, and they require diets rich in vitamins and minerals to ensure micronutrient adequacy. Microgreens, with their high nutrient density, hold promise in addressing these deficiencies. Fresh and processed microgreens based products can enhance food variety, nutritive value, and appeal. Rethinking agriculture and horticulture as tools to combat malnutrition and reduce the risk of non-communicable diseases (NCDs) is vital for achieving nutritional security and poverty reduction. This review compiles recent research on microgreens, focusing on their nutrient profiles, health benefits, suitable crops, substrates, seed density, growing methods, sensory characteristics, and applications as fresh and value-added products. It offers valuable insights into sustainable agriculture and the role of microgreens in enhancing human nutrition and health.
Collapse
Affiliation(s)
- Tania Seth
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Gyan Prakash Mishra
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | - Arup Chattopadhyay
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, West Bengal, India;
| | - Partha Deb Roy
- ICAR-Indian Institute of Water Management, Bhubaneswar 751 023, Odisha, India;
| | - Mridula Devi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Ankita Sahu
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Sukanta Kumar Sarangi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Chaitrali Shashank Mhatre
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Yvonne Angel Lyngdoh
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793 009, Meghalaya, India;
| | - Visalakshi Chandra
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India;
| | - Harsh Kumar Dikshit
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | | |
Collapse
|
2
|
Sheikhi H, Nicola S, Delshad M, Bulgari R. Sodium selenate biofortification, through seed priming, on dill microgreens grown in two different cultivation systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1474420. [PMID: 39691483 PMCID: PMC11651346 DOI: 10.3389/fpls.2024.1474420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
Human health is significantly influenced by the quality of vegetables included in the diet. Soilless cultivation methods have the potential to enhance and standardize the levels of secondary metabolites or specific bioactive compounds in plants, even when utilizing LED lighting. In recent years, tailored foods, enriched with important microelements, are growing in popularity. The present research was conducted to explore the quantitative and qualitative aspects of dill (Anethum graveolens L.), grown either indoor or in a greenhouse and harvested during the microgreen stage. Seeds of dill were primed with 1.5 and 3 mg L-1 selenium (Se). Untreated dry and hydro-primed seeds were used as the control and positive control groups, respectively. Results demonstrated a higher yield in indoor farm environment (1255.6 g FW m-2) compared to greenhouse (655.1 g FW m-2), with a general positive effect on the morphological traits studied, with no significant influence from priming and Se. The mean value of phenolic index of microgreens grown in the greenhouse was 13.66% greater than that grown in indoor condition. It was also observed that seeds priming with Se can effectively raise the Se content in dill microgreens, in both tested conditions. Overall, our results suggest that the 3 mg L-1 Se seems to be the most promising concentration to obtain Se-enriched microgreens.
Collapse
Affiliation(s)
- Hossein Sheikhi
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Mojtaba Delshad
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roberta Bulgari
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|
3
|
de Oliveira I, Chrysargyris A, Finimundy TC, Carocho M, Santos-Buelga C, Calhelha RC, Tzortzakis N, Barros L, Heleno SA. The influence of magnesium and manganese cations on the chemical and bioactive properties of purple and green basil. Food Funct 2024; 15:10644-10662. [PMID: 39376008 DOI: 10.1039/d4fo02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This research investigated the effects of hydroponic cultivation with enriched concentrations of magnesium (+Mg), manganese (+Mn), a combination of +Mg and +Mn, or decreased concentrations of these minerals (control) on the nutritional, chemical, and bioactive attributes of purple and green basil. While Mn significantly increased the growth of purple basil and affected the composition of essential oil and mineral accumulation, plants treated with Mg showed alterations in nutrient absorption. Protein values were lower, indicating suboptimal protein synthesis, but significant increases were observed in fat, ash, and carbohydrates, suggesting a more nutrient-rich composition due to hydroponic cultivation. Regarding phenolic compounds, green basil showed higher concentrations of rosmarinic acid with +Mg+Mn, while purple basil exhibited lower levels with the addition of +Mn or +Mg+Mn. Antioxidant activities mirrored the phenolic profile, with purple basil displaying superior performance in the thiobarbituric acid-reactive substance (TBARS) test with +Mg treatment, and green basil showing higher activity in the cell antioxidant activity (CAA) test with the +Mg+Mn combination. In microbiological analyses, purple basil was more effective against S. aureus, while green basil performed better against L. monocytogenes. Although none were bactericidal, all treatments showed potential as antimicrobials. Purple basil extracts had significant antiproliferative effects on tumor cell lines, especially non-small cell lung carcinoma (NCI-H460), with synergistic effects observed in gastric adenocarcinoma (AGS) with +Mg+Mn. Additionally, +Mg+Mn demonstrated unique efficacy against colorectal adenocarcinoma (CaCo2) and breast carcinoma (MFC-7 cells), without toxicity to non-tumor a renal epithelial cell line from an African green monkey (VERO) cell, emphasizing the safety of the extracts. Green basil extracts showed no activity against the tumor cell lines analyzed (AGS, Caco2, MFC-7 and NCI-H460); however, they revealed remarkable antiproliferative effects against NCI-H460 cells in the control group. The results are important because they show how mineral treatments, such as the use of magnesium and manganese, influence the nutritional and medicinal properties of purple and green basil leaves. This highlights the relevance of manipulating nutrient solutions to improve plant quality, which is crucial for the production of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Izamara de Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Simultaneous biofortification of vitamin C and mineral nutrients in arugula microgreens. Food Chem 2024; 440:138180. [PMID: 38104455 DOI: 10.1016/j.foodchem.2023.138180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Microgreens have shown promise in improving the overall nutritional value of diets due to their high nutrient density. Agronomic biofortification, is an efficient strategy for enhancing the nutritional value of crops, including microgreens. This study aimed to biofortify vitamin C and other essential nutrients in arugula microgreens using four treatments containing 0.25 % ascorbic acid, pH adjusted with different bases: KOH, Ca(OH)2, ZnCO3, or NaOH and a deionized water control. The results indicate that ascorbic acid-treated microgreens had more vitamin C, greater fresh weight and % dry matter than the control. The ascorbic acid + Zn treatment had an 135 % average increase in vitamin C compared to the control. Microgreens treated with ascorbic acid also showed increased levels of minerals that are present in the nutrient solution, such as potassium, sodium, calcium, and zinc. This research contributes to the growing interest in microgreens biofortification and their role in addressing multi-nutrient deficiencies.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
5
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
6
|
García-Tenesaca M, Llugany M, Boada R, Sánchez-Martín MJ, Valiente M. Phytochemical Profile, Bioactive Properties, and Se Speciation of Se-Biofortified Red Radish ( Raphanus sativus), Green Pea ( Pisum sativum), and Alfalfa ( Medicago sativa) Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4947-4957. [PMID: 38393752 PMCID: PMC10921463 DOI: 10.1021/acs.jafc.3c08441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 μM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.
Collapse
Affiliation(s)
- Marilyn
M. García-Tenesaca
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant
Physiology Group (BABVE), Faculty of Biosciences, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Boada
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María-Jesús Sánchez-Martín
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuel Valiente
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. A decade of improving nutritional quality of horticultural crops agronomically (2012-2022): A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168665. [PMID: 37992822 DOI: 10.1016/j.scitotenv.2023.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The ultimate goal of world crop production is to produce more with less to meet the growing population demands. However, concentrating solely on increased quantity of production often impacts the quality of produce. Consumption of crops or foods that do not meet nutritional or dietary needs can lead to malnutrition. Malnutrition and undernutrition are prevalent in a significant portion of the population. Agronomic biofortification of minerals and vitamins in horticultural crops has emerged as a promising approach to address nutrient deficiencies and enhance the nutritional quality of food. Despite numerous research papers on plant nutrient biofortification, there remains a lack of systematic reviews that comprehensively summarize the latest knowledge on this topic. Herein we discuss different agronomic ways to biofortify several horticultural crops over the past decade. This systematic review aims to fill this gap by presenting various methodologies and comparing the outcomes of these methods in respect to nutrient content in plant parts. The review focuses on original research papers collected from various scientific databases including Scopus and Web of Knowledge, covering the most recent literature from the last ten years (2012-2022) for specific studies on the agronomic biofortification macronutrients, micronutrients, and vitamins in horticultural plants with exclusion of certain criteria such as 'genetic,' 'breeding,' and 'agronomic crops.' This review critically analyzes the current state of research and explores prospects for the future in this field. The biofortification of various minerals and vitamins, including calcium, selenium, iodine, B vitamins, vitamin A, and vitamin C, are examined, highlighting the achievements and limitations of existing studies. In conclusion, agronomic biofortification of minerals and vitamins in horticultural crops with further research offers a promising approach to address nutrient deficiencies and improve the nutritional quality of food.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
8
|
Viltres-Portales M, Sánchez-Martín MJ, Llugany M, Boada R, Valiente M. Selenium biofortification of microgreens: Influence on phytochemicals, pigments and nutrients. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108283. [PMID: 38142664 DOI: 10.1016/j.plaphy.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 μmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 μg Se·g-1 DW) and kohlrabi (127 μg Se·g-1 DW) higher than that obtained for wheat (28 μg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.
Collapse
Affiliation(s)
- Marcia Viltres-Portales
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Institute of Materials Science and Technology, Universidad de La Habana, Zapata y G, Vedado, Plaza, 10400, La Habana, Cuba
| | - María-Jesús Sánchez-Martín
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
9
|
Zhou B, Cao H, Wu Q, Mao K, Yang X, Su J, Zhang H. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality. Foods 2023; 12:4442. [PMID: 38137246 PMCID: PMC10742783 DOI: 10.3390/foods12244442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an essential trace element that plays a crucial role in maintaining the health of humans, animals, and certain plants. It is extensively present throughout the Earth's crust and is absorbed by crops in the form of selenates and selenite, eventually entering the food chain. Se biofortification is an agricultural process that employs agronomic and genetic strategies. Its goal is to enhance the mechanisms of crop uptake and the accumulation of exogenous Se, resulting in the production of crops enriched with Se. This process ultimately contributes to promoting human health. Agronomic strategies in Se biofortification aim to enhance the availability of exogenous Se in crops. Concurrently, genetic strategies focus on improving a crop's capacity to uptake, transport, and accumulate Se. Early research primarily concentrated on optimizing Se biofortification methods, improving Se fertilizer efficiency, and enhancing Se content in crops. In recent years, there has been a growing realization that Se can effectively enhance crop growth and increase crop yield, thereby contributing to alleviating food shortages. Additionally, Se has been found to promote the accumulation of macro-nutrients, antioxidants, and beneficial mineral elements in crops. The supplementation of Se biofortified foods is gradually emerging as an effective approach for promoting human dietary health and alleviating hidden hunger. Therefore, in this paper, we provide a comprehensive summary of the Se biofortification conducted over the past decade, mainly focusing on Se accumulation in crops and its impact on crop quality. We discuss various Se biofortification strategies, with an emphasis on the impact of Se fertilizer strategies on crop Se accumulation and their underlying mechanisms. Furthermore, we highlight Se's role in enhancing crop quality and offer perspective on Se biofortification in crop improvement, guiding future mechanistic explorations and applications of Se biofortification.
Collapse
Affiliation(s)
- Bingqi Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Su
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| |
Collapse
|
10
|
Ledwożyw-Smoleń I, Pitala J, Smoleń S, Liszka-Skoczylas M, Kováčik P. Iodine Biofortification of Dandelion Plants ( Taraxacum officinale F.H. Wiggers Coll.) with the Use of Inorganic and Organic Iodine Compounds. Molecules 2023; 28:5638. [PMID: 37570607 PMCID: PMC10419995 DOI: 10.3390/molecules28155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Iodine is a crucial microelement necessary for the proper functioning of human and animal organisms. Plant biofortification has been proposed as a method of improving the iodine status of the population. Recent studies in that field have revealed that iodine may also act as a beneficial element for higher plants. The aim of the work was to evaluate the efficiency of the uptake and accumulation of iodine in the plants of dandelion grown in a pot experiment. During cultivation, iodine was applied through fertigation in inorganic (KI, KIO3) and organic forms (5-iodosalicylic acid, 5-ISA; 3,5-diiodosalicylic acid, 3,5-diISA) at two concentrations (10 and 50 µM). The contents of total iodine and iodosalicylic acids, as well the plant biomass and antioxidant capacity of dandelion leaves and roots, were analyzed. The uptake of inorganic and organic forms by dandelion plants was confirmed with no negative effect on plant growth. The highest efficiency of improving iodine content in dandelion leaves and roots was noted for 50 µM KI. The applicability of iodosalicylates, especially 5-ISA, for plant biofortification purposes was confirmed, particularly as the increase in the iodine content after the application of 5-ISA was higher as compared to that with commonly used KIO3. The chemical analyses have revealed that iodosalicylates are endogenous compounds of dandelion plants.
Collapse
Affiliation(s)
- Iwona Ledwożyw-Smoleń
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Sylwester Smoleń
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland;
- Laboratory of Mass Spectrometry, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| |
Collapse
|
11
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1145992. [PMID: 36938024 PMCID: PMC10020514 DOI: 10.3389/fpls.2023.1145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The consumption of plants plays an important role in human health. In addition to providing macro and micronutrients, plants are the sole sources of several phytonutrients that play a major role in disease prevention. However, in modern diets, increased consumption of cheaper, processed foods with poor nutritional value over fruits and vegetables leads to insufficient consumption of essential nutrients such as vitamin C. Taking supplements can address some of the insufficient nutrients in a diet. However, supplements are not as diverse or bioavailable as the nutrients in plants. Improving the abundance of nutrients in plants will reduce the amounts that need to be consumed, thereby reducing the price barrier and use of supplements. In this study, broccoli (Brassica oleracea var. italica) microgreens grown in a controlled environment were biofortified for increased vitamin C content. The microgreens grown on growing pads were treated with supplemental nutrient solutions. Treatments were applied four to five days after germination and included four different concentrations of ascorbic acid specifically, 0% (control), 0.05%, 0.1%, 0.25% and 0.5%, added to the nutrient solution. Microgreens with turgid cotyledons and appearance of tip of first true leaves were harvested about 14 days after germination and were analyzed for biomass, chlorophylls, carotenoids, vitamin C and other minerals content. The ascorbic acid improved the microgreens' fresh biomass, percent dry matter, chlorophylls, carotenoids, vitamin C, and potassium content. Moreover, this study also mapped out the correlation between ascorbic acid, phytochemicals, and broccoli microgreens' mineral composition. The total vitamin C was positively correlated to K and negatively correlated to chlorophylls, N, P, Mg, Ca, S, and B (p < 0.01). These relationships can be applied in future vitamin C biofortification research across different microgreens. In conclusion, vitamin C was increased up to 222% by supplemental ascorbic acid without being detrimental to plant health and mineral composition.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
12
|
Bao Z, Wu Y, Song R, Gao Y, Zhang S, Zhao K, Wu T, Zhang C, Du F. The simple strategy to improve pesticide bioavailability and minimize environmental risk by effective and ecofriendly surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158169. [PMID: 35995160 DOI: 10.1016/j.scitotenv.2022.158169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Low pesticide efficiency has caused serious environmental pollution and economic loss, which are closely related to each link in the targeted delivery of pesticides. However, the existing strategies for improving pesticide utilization rate are not comprehensive, and the regulation of foliar absorption and biological activity has been neglected. As surfactants are the most important agricultural synergists, the impact, wetting, adhesion, and leaf retention behaviors of pyraclostrobin (PYR) droplets containing the surfactant Triton X (TX) series on hydrophobic scallion leaf surfaces were studied. The results showed that TX-102 can sufficiently reduce the splash and roll of droplets when they impact inclined leaves, owing to its low dynamic surface tension. Moderate wetting ability and high adhesion also maximizes leaf retention of the TX-102-added PYR solution sprayed on scallion leaves. Furthermore, TX-102 improved the permeation and absorption of PYR in scallion leaves through the synergistic effects of opening the stomata and dissolving the waxy layer. The synergistic bioactivity of TX-102 against pathogenic fungi Alternaria porri and its safety to non-target organism zebrafish have also been demonstrated. Our study provides a more comprehensive theoretical rationale for screening adjuvants to improve the effectiveness and bioavailability of pesticides and reduce the risk of pesticides entering the environment.
Collapse
Affiliation(s)
- Zhenping Bao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yanling Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Ridan Song
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Songhao Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Kefei Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Tianyue Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Chenhui Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Increasing vitamin C through agronomic biofortification of arugula microgreens. Sci Rep 2022; 12:13093. [PMID: 35908076 PMCID: PMC9338947 DOI: 10.1038/s41598-022-17030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Vitamin C (Vit C) is an essential micronutrient and antioxidant for human health. Unfortunately, Vit C cannot be produced in humans and is ingested through diet while severe deficiencies can lead to scurvy. However, consumption is often inconsistent, and foods vary in Vit C concentrations. Biofortification, the practice of increasing micronutrient or mineral concentrations, can improve the nutritional quality of crops and allow for more consistent dietary levels of these nutrients. Of the three leading biofortification practices (i.e., conventional, transgenic, and agronomical), the least explored approach to increase Vit C in microgreens is agronomically, especially through the supplemental application of ascorbic acid. In this study, biofortification of Vit C in microgreens through supplemental ascorbic acid was attempted and proven achievable. Arugula (Eruca sativa 'Astro') microgreens were irrigated with four concentrations of ascorbic acid and a control. Total Vit C (T-AsA) and ascorbic acid increased in microgreens as supplementary concentrations increased. In conclusion, biofortification of Vit C in microgreens through supplemental ascorbic acid is achievable, and consumption of these bio-fortified microgreens could help fulfill the daily Vit C requirements for humans, thereby reducing the need for supplemental vitamins.
Collapse
|
14
|
Moraru PI, Rusu T, Mintas OS. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022; 11:foods11091327. [PMID: 35564050 PMCID: PMC9103178 DOI: 10.3390/foods11091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
The hydroponic production of microgreens has potential to develop, at both an industrial, and a family level, due to the improved production platforms. The literature review found numerous studies which recommend procedures, parameters and best intervals for the development of microgreens. This paper aims to develop, based on the review of the literature, a set of procedures and parameters, included in a test protocol, for hydroponically cultivated microgreens. Procedures and parameters proposed to be included in the trial protocol for evaluating platforms for growing microgreens in hydroponic conditions are: (1) different determinations: in controlled settings (setting the optimal ranges) and in operational environments settings (weather conditions in the area/testing period); (2) procedures and parameters related to microgreen growth (obtaining the microgreens seedling, determining microgreen germination, measurements on the morphology of plants, microgreens harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter content, water use efficiency, bioactive compound analysis, statistical analysis). Procedures and parameters proposed in the protocol will provide us with the evaluation information of the hydroponic platforms to ensure: number of growing days to reach desired size; yield per area, crop health, and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Paula Ioana Moraru
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Teodor Rusu
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence:
| | | |
Collapse
|