1
|
Ren J, Liu Y, Liu S, Wang R, Qiao Z, Cao X. Effect of sowing date on physicochemical properties of waxy and non-waxy proso millet (Panicum miliaceum L.) starches. Int J Biol Macromol 2025; 303:140626. [PMID: 39914526 DOI: 10.1016/j.ijbiomac.2025.140626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
In this experiment, waxy (Shuzi, P1) and non-waxy (Ningmei No. 14, P2) proso millet were used as experimental materials to study the quality changes of waxy and non-waxy proso millet in different sowing dates as well as the differences in the physical and chemical properties of starch, such as starch morphological structure, crystal structure and gelatinization properties. The results showed that with the postponement of the sowing date, the total starch contents of P1 and P2 decreased by 2 % - 7.28 % and 3.26 % - 8.23 %, respectively, and the protein contents decreased by 0.1 % - 9.91 % and 2.52 % - 5.03 %, respectively. Compared with B1, B3 - B5 reduced the amylose content of P1 by 15.21 % - 26.80 %. With the postponement of the sowing date, the breakdown (BD) of P1 increased by 4.68-22.79 %, while the trough viscosity (TV) and final viscosity (FV) decreased by 2.50 % - 17.43 % and 2.58 % - 9.21 %, respectively. The peak viscosity (PV), TV, BD and FV of P2 increased by 10.33 % - 36.95 %, 9.31 % - 19.86 %, 12.68 % - 81.07 % and 5.69 % - 36.46 %, respectively, with the postponement of the sowing date. The sowing date also affected the volume distribution of proso millet grains. This study clarified the influence of sowing date on the quality of proso millet grains and the physical and chemical properties of starch, providing a theoretical basis for improving the high-yield and high-quality cultivation techniques of proso millet grains and the deep processing of products.
Collapse
Affiliation(s)
- Jiangling Ren
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Yuhan Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Sichen Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ruiyun Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
Deng S, Gu Q, Wu Y, Yi W, Lu J, Peng L, Tang X. Yield Difference between Different Cultivation Techniques under Ultrasonic Treatment Driven by Radiation Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:2510. [PMID: 39273993 PMCID: PMC11396906 DOI: 10.3390/plants13172510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Ultrasonic treatment and optimal cultivation techniques are both conducive to the high yield of super rice in South China. Many previous studies have shown that the increase in intercepted photosynthetically active radiation (IPAR) and radiation use efficiency (RUE) is an important reason for high rice yield. Field experiments were conducted over two years to evaluate the effects of IPAR and RUE on the yield under different treatments (CK: conventional cultivation technique without ultrasonic treatment; T1: conventional cultivation technique with ultrasonic treatment; T2: super rice-specific cultivation technique without ultrasonic treatment and T3: super rice-specific cultivation technique with ultrasonic treatment), with two representative rice varieties, Wufengyou-615 (WFY) and Jingnongsimiao (JNSM) during the late seasons of rice cultivation in South China. The super rice-specific cultivation technique and the ultrasonic treatment could significantly increase the yield, which was significantly (p < 0.01) and positively correlated with panicle number, grain-filling rate, and aboveground total dry weight. The higher grain yield depended more highly on higher RUE in the mid-tillering stage and maturity stage. The results of multiple-regression models also showed that the contributions of IPAR and RUE to yield were significant (p < 0.01). Conclusively, IPAR and RUE contributed a lot to yield progress of super rice in both super rice-specific cultivation techniques with fewer times of topdressing and ultrasonic treatment in South China. It is worth further studying how to reasonably improve the RUE of high-RUE varieties through other means.
Collapse
Affiliation(s)
- Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Yizhu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
3
|
Jiang Z, Chen Q, Liu D, Tao W, Gao S, Li J, Lin C, Zhu M, Ding Y, Li W, Li G, Sakr S, Xue L. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality. BMC PLANT BIOLOGY 2024; 24:621. [PMID: 38951829 PMCID: PMC11218275 DOI: 10.1186/s12870-024-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, Angers, 49000, France
| | - Qiuli Chen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221000, China
| | - Dun Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Weike Tao
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Shen Gao
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Jiaqi Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Chunhao Lin
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Meichen Zhu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Weiwei Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, Angers, 49000, France
| | - Lihong Xue
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China.
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
4
|
Jiang Z, Yang H, Zhu M, Wu L, Yan F, Qian H, He W, Liu D, Chen H, Chen L, Ding Y, Sakr S, Li G. The Inferior Grain Filling Initiation Promotes the Source Strength of Rice Leaves. RICE (NEW YORK, N.Y.) 2023; 16:41. [PMID: 37715876 PMCID: PMC10505135 DOI: 10.1186/s12284-023-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Poor grain-filling initiation in inferior spikelets severely impedes rice yield improvement, while photo-assimilates from source leaves can greatly stimulate the initiation of inferior grain-filling (sink). To investigate the underlying mechanism of source-sink interaction, a two-year field experiment was conducted in 2019 and 2020 using two large-panicle rice cultivars (CJ03 and W1844). The treatments included intact panicles and partial spikelet removal. These two cultivars showed no significant difference in the number of spikelets per panicle. However, after removing spikelet, W1844 showed higher promotion on 1000-grain weight and seed-setting rate than CJ03, particularly for inferior spikelets. The reason was that the better sink activity of W1844 led to a more effective initiation of inferior grain-filling compared to CJ03. The inferior grain weight of CJ03 and W1844 did not show a significant increase until 8 days poster anthesis (DPA), which follows a similar pattern to the accumulation of photo-assimilates in leaves. After removing spikelets, the source leaves of W1844 exhibited lower photosynthetic inhibition compared to CJ03, as well as stronger metabolism and transport of photo-assimilates. Although T6P levels remained constant in both cultivars under same conditions, the source leaves of W1844 showed notable downregulation of SnRK1 activity and upregulation of phytohormones (such as abscisic acid, cytokinins, and auxin) after removing spikelets. Hence, the high sink strength of inferior spikelets plays a role in triggering the enhancement of source strength in rice leaves, thereby fulfilling grain-filling initiation demands.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
- Institut Agro, University of Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, 49000, France
| | - Hongyi Yang
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Meichen Zhu
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Longmei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Feiyu Yan
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Haoyu Qian
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Wenjun He
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Dun Liu
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Hong Chen
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Lin Chen
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Yanfeng Ding
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, 49000, France
| | - Ganghua Li
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China.
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China.
| |
Collapse
|
5
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Guo J, Qu L, Wei Q, Lu D. Effects of post-silking low temperature on the starch and protein metabolism, endogenous hormone contents, and quality of grains in waxy maize. FRONTIERS IN PLANT SCIENCE 2022; 13:988172. [PMID: 36407592 PMCID: PMC9673756 DOI: 10.3389/fpls.2022.988172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waxy maize has many excellent characteristics in food and nonfood industries. However, post-silking low temperature (LT) has severe limitations on its grain yield and quality. In this study, field and pot trials were conducted to investigate the effects of post-silking LT on the physiological, biochemical, and functional characteristics of two waxy maize grains. The field and pot trials were performed with sowing date and artificial climate chamber, respectively, for LT treatment from silking stage to maturity. Results in pot trial were used to explain and validate the findings in field trial. Compared with the ambient treatment, the LT treatment significantly reduced kernel weight during the grain filling stage (P < 0.05). LT treatment in both environments resulted in an average decrease in dry weight of SYN5 and YN7 at maturity by 36.6% and 42.8%, respectively. Enzymatic activities related to starch and protein biosynthesis decreased under the LT treatment during the filling stage, accompanied by a decrease in the accumulation amounts and contents of soluble sugar and starch, and a decrease in protein accumulation amount. Meanwhile, the contents of abscisic acid, indole-3-acetic acid, and gibberellin 3 in grains decreased under the LT treatment during the filling stage. Peak, trough, breakdown, final, and setback viscosities of grains decreased by LT. LT treatment decreased the gelatinization enthalpy of grains and increased the retrogradation percentage. In conclusion, post-silking LT stress altered the content of grain components by inhibiting the production of phytohormones and down-regulating the enzymatic activities involved in starch and protein metabolism, which resulted in the deterioration of grain pasting and thermal properties.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Farooq MS, Khaskheli MA, Uzair M, Xu Y, Wattoo FM, Rehman OU, Amatus G, Fatima H, Khan SA, Fiaz S, Yousuf M, Ramzan Khan M, Khan N, Attia KA, Ercisli S, Golokhvast KS. Inquiring the inter-relationships amongst grain-filling, grain-yield, and grain-quality of Japonica rice at high latitudes of China. Front Genet 2022; 13:988256. [PMID: 36338987 PMCID: PMC9635508 DOI: 10.3389/fgene.2022.988256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The widespread impacts of projected global and regional climate change on rice yield have been investigated by different indirect approaches utilizing various simulation models. However, direct approaches to assess the impacts of climatic variabilities on rice growth and development may provide more reliable evidence to evaluate the effects of climate change on rice productivity. Climate change has substantially impacted rice production in the mid-high latitudes of China, especially in Northeast China (NEC). Climatic variabilities occurring in NEC since the 1970s have resulted in an obvious warming trend, which made this region one of the three major rice-growing regions in China. However, the projections of future climate change have indicated the likelihood of more abrupt and irregular climatic changes, posing threats to rice sustainability in this region. Hence, understanding the self-adaptability and identifying adjustive measures to climate variability in high latitudes has practical significance for establishing a sustainable rice system to sustain future food security in China. A well-managed field study under randomized complete block design (RCBD) was conducted in 2017 and 2018 at two study sites in Harbin and Qiqihar, located in Heilongjiang province in NEC. Four different cultivars were evaluated: Longdao-18, Longdao-21 (longer growth duration), Longjing-21, and Suijing-18 (shorter growth duration) to assess the inter-relationships among grain-filling parameters, grain yield and yield components, and grain quality attributes. To better compare the adaptability mechanisms between grain-filling and yield components, the filling phase was divided into three sub-phases (start, middle, and late). The current study evaluated the formation and accumulation of the assimilates in superior and inferior grains during grain-filling, mainly in the middle sub-phase, which accounted for 59.60% of the yield. The grain yields for Suijing-18, Longjing-21, Longdao-21, and Longdao-18 were 8.02%, 12.78%, 17.19%, and 20.53% higher in Harbin than those in Qiqihar, respectively in 2017, with a similar trend observed in 2018. At Harbin, a higher number of productive tillers was noticed in Suijing-18, with averages of 17 and 15 in 2017 and 2018, respectively. The grain-filling parameters of yield analysis showed that the filling duration in Harbin was conducive to increased yield but the low dry weight of inferior grains was a main factor limiting the yield in Qiqihar. The average protein content values in Harbin were significantly higher (8.54% and 9.13%) than those in Qiqihar (8.34% and 9.14%) in 2017 and 2018, respectively. The amylose content was significantly higher in Harbin (20.03% and 22.27%) than those in Qiqihar (14.44% and 14.67%) in 2017 and 2018, respectively. The chalkiness percentage was higher in Qiqihar, indicating that Harbin produced good quality rice. This study provides more direct evidence of the relative changes in rice grain yield due to changes in grain-filling associated with relative changes in environmental components. These self-adaptability mechanisms to climatic variability and the inter-relationships between grain-filling and grain yield underscore the urgent to investigate and explore measures to improve Japonica rice sustainability, with better adaptation to increasing climatic variabilities. These findings may also be a reference for other global rice regions at high latitudes in addressing the impacts of climate change on future rice sustainability.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maqsood Ahmed Khaskheli
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Yinlong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fahad Masood Wattoo
- Department of Plant Breeding and Genetics, PMAS- Arid Agriculture University, Rawalpindi, Pakistan
| | - Obaid ur Rehman
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Gyilbag Amatus
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hira Fatima
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | | | | | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL, United States
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|