1
|
Le Naour‐‐Vernet M, Lahfa M, Maidment JHR, Padilla A, Roumestand C, de Guillen K, Kroj T, Césari S. Structure-guided insights into the biology of fungal effectors. THE NEW PHYTOLOGIST 2025; 246:1460-1477. [PMID: 40130672 PMCID: PMC12018790 DOI: 10.1111/nph.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025]
Abstract
Phytopathogenic fungi cause enormous yield losses in many crops, threatening both agricultural production and global food security. To infect plants, they secrete effectors targeting various cellular processes in the host. Putative effector genes are numerous in fungal genomes, and they generally encode proteins with no sequence homology to each other or to other known proteins or domains. Recent studies have elucidated and predicted three-dimensional structures of effectors from a wide diversity of plant pathogenic fungi, revealing a limited number of conserved folds. Effectors with very diverse amino acid sequences can thereby be grouped into families based on structural homology. Some structural families are conserved in many different fungi, and some are expanded in specific fungal taxa. Here, we describe the features of these structural families and discuss recent advances in predicting new structural families. We highlight the contribution of structural analyses to deepen our understanding of the function and evolution of fungal effectors. We also discuss prospects offered by advances in structural modeling for predicting and studying the virulence targets of fungal effectors in plants.
Collapse
Affiliation(s)
- Marie Le Naour‐‐Vernet
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Mounia Lahfa
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Josephine H. R. Maidment
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - André Padilla
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Christian Roumestand
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Karine de Guillen
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
2
|
Sabelleck B, Deb S, Levecque SCJ, Freh M, Reinstädler A, Spanu PD, Thordal-Christensen H, Panstruga R. A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley. PLANT PHYSIOLOGY 2025; 197:kiaf067. [PMID: 39973312 PMCID: PMC12002017 DOI: 10.1093/plphys/kiaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein-sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41, or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.
Collapse
Affiliation(s)
- Björn Sabelleck
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sohini Deb
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sophie C J Levecque
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
3
|
Bilstein-Schloemer M, Müller MC, Saur IML. Technical Advances Drive the Molecular Understanding of Effectors from Wheat and Barley Powdery Mildew Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:213-225. [PMID: 39799551 DOI: 10.1094/mpmi-12-24-0155-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts. In addition to the inhibition of the plant's immune components, these pathogens are under particular pressure to extract nutrients efficiently from the host. Understanding the molecular basis of infections mediated by obligate biotrophic pathogens is significant because of their impact in modern agriculture. In addition, powdery mildews serve as excellent models for obligate biotrophic cereal pathogens. Here, we summarize the current knowledge on the effectorome of the barley and wheat powdery mildews and putative molecular virulence functions of effectors. We emphasize the availability of comprehensive genomic, transcriptomic, and proteomic resources and discuss the methodological approaches used for identifying candidate effectors, assessing effector virulence traits, and identifying effector targets in the host. We highlight established and more recently employed methodologies, discuss limitations, and suggest additional strategies. We identify open questions and discuss how addressing them with currently available resources will enhance our understanding of Blumeria candidates for secretor effector proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Marion C Müller
- School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Velásquez-Zapata V, Smith S, Surana P, Chapman AV, Jaiswal N, Helm M, Wise RP. Diverse epistatic effects in barley-powdery mildew interactions localize to host chromosome hotspots. iScience 2024; 27:111013. [PMID: 39445108 PMCID: PMC11497433 DOI: 10.1016/j.isci.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR) receptors that specify recognition to diverse cereal diseases. We exploited time-course transcriptome dynamics of barley and derived immune mutants infected with the powdery mildew fungus, Blumeria hordei (Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blufensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1 ΔKL308-309 ). Interactions of Mla6 and Bln1 resulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseudomonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468 barley NLRs, 115 were grouped under different gene effect models; genes classified under these models localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into nine co-expressed modules, linking differential expression with pathogen structures, signifying that disease is regulated by an inter-organismal network that diversifies the response.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Schuyler Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Informatics Infrastructure Team, Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Antony V.E. Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- Phytoform Labs, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Namrata Jaiswal
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Matthew Helm
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
5
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
6
|
Li Z, Velásquez‐Zapata V, Elmore JM, Li X, Xie W, Deb S, Tian X, Banerjee S, Jørgensen HJL, Pedersen C, Wise RP, Thordal‐Christensen H. Powdery mildew effectors AVR A1 and BEC1016 target the ER J-domain protein HvERdj3B required for immunity in barley. MOLECULAR PLANT PATHOLOGY 2024; 25:e13463. [PMID: 38695677 PMCID: PMC11064805 DOI: 10.1111/mpp.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.
Collapse
Affiliation(s)
- Zizhang Li
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Present address:
Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape ArchitectureUniversity of MarylandRockvilleMarylandUSA
| | - Valeria Velásquez‐Zapata
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- Present address:
GreenLight Biosciences, IncResearch Triangle ParkNorth CarolinaUSA
| | - J. Mitch Elmore
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- USDA‐Agricultural Research Service, Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Present address:
USDA‐Agricultural Research Service, Cereal Disease LaboratorySt. PaulMinnesotaUSA
| | - Xuan Li
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Wenjun Xie
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Sohini Deb
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Xiao Tian
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Sagnik Banerjee
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of StatisticsIowa State UniversityAmesIowaUSA
- Present address:
Bristol Myers SquibbSan DiegoCaliforniaUSA
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Carsten Pedersen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Roger P. Wise
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- USDA‐Agricultural Research Service, Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | |
Collapse
|
7
|
Nallathambi P, Umamaheswari C, Reddy B, Aarthy B, Javed M, Ravikumar P, Watpade S, Kashyap PL, Boopalakrishnan G, Kumar S, Sharma A, Kumar A. Deciphering the Genomic Landscape and Virulence Mechanisms of the Wheat Powdery Mildew Pathogen Blumeria graminis f. sp. tritici Wtn1: Insights from Integrated Genome Assembly and Conidial Transcriptomics. J Fungi (Basel) 2024; 10:267. [PMID: 38667938 PMCID: PMC11051031 DOI: 10.3390/jof10040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
A high-quality genome sequence from an Indian isolate of Blumeria graminis f. sp. tritici Wtn1, a persistent threat in wheat farming, was obtained using a hybrid method. The assembly of over 9.24 million DNA-sequence reads resulted in 93 contigs, totaling a 140.61 Mb genome size, potentially encoding 8480 genes. Notably, more than 73.80% of the genome, spanning approximately 102.14 Mb, comprises retro-elements, LTR elements, and P elements, influencing evolution and adaptation significantly. The phylogenomic analysis placed B. graminis f. sp. tritici Wtn1 in a distinct monocot-infecting clade. A total of 583 tRNA anticodon sequences were identified from the whole genome of the native virulent strain B. graminis f. sp. tritici, which comprises distinct genome features with high counts of tRNA anticodons for leucine (70), cysteine (61), alanine (58), and arginine (45), with only two stop codons (Opal and Ochre) present and the absence of the Amber stop codon. Comparative InterProScan analysis unveiled "shared and unique" proteins in B. graminis f. sp. tritici Wtn1. Identified were 7707 protein-encoding genes, annotated to different categories such as 805 effectors, 156 CAZymes, 6102 orthologous proteins, and 3180 distinct protein families (PFAMs). Among the effectors, genes like Avra10, Avrk1, Bcg-7, BEC1005, CSEP0105, CSEP0162, BEC1016, BEC1040, and HopI1 closely linked to pathogenesis and virulence were recognized. Transcriptome analysis highlighted abundant proteins associated with RNA processing and modification, post-translational modification, protein turnover, chaperones, and signal transduction. Examining the Environmental Information Processing Pathways in B. graminis f. sp. tritici Wtn1 revealed 393 genes across 33 signal transduction pathways. The key pathways included yeast MAPK signaling (53 genes), mTOR signaling (38 genes), PI3K-Akt signaling (23 genes), and AMPK signaling (21 genes). Additionally, pathways like FoxO, Phosphatidylinositol, the two-component system, and Ras signaling showed significant gene representation, each with 15-16 genes, key SNPs, and Indels in specific chromosomes highlighting their relevance to environmental responses and pathotype evolution. The SNP and InDel analysis resulted in about 3.56 million variants, including 3.45 million SNPs, 5050 insertions, and 5651 deletions within the whole genome of B. graminis f. sp. tritici Wtn1. These comprehensive genome and transcriptome datasets serve as crucial resources for understanding the pathogenicity, virulence effectors, retro-elements, and evolutionary origins of B. graminis f. sp. tritici Wtn1, aiding in developing robust strategies for the effective management of wheat powdery mildew.
Collapse
Affiliation(s)
- Perumal Nallathambi
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Chandrasekaran Umamaheswari
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Bhaskar Reddy
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| | - Balakrishnan Aarthy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Mohammed Javed
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| | - Priya Ravikumar
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Santosh Watpade
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla 171004, Himachal Pradesh, India;
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | - Anju Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| |
Collapse
|
8
|
Shen L, Xia X, Zhang L, Yang S, Yang X. Genome-Wide Identification of Catalase Gene Family and the Function of SmCAT4 in Eggplant Response to Salt Stress. Int J Mol Sci 2023; 24:16979. [PMID: 38069301 PMCID: PMC10706941 DOI: 10.3390/ijms242316979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity is an important abiotic stress, damaging plant tissues by causing a burst of reactive oxygen species (ROS). Catalase (CAT) enzyme coded by Catalase (CAT) genes are potent in reducing harmful ROS and hydrogen peroxide (H2O2) produced. Herein, we performed bioinformatics and functional characterization of four SmCAT genes, retrieved from the eggplant genome database. Evolutionary analysis CAT genes revealed that they are divided into subgroups I and II. The RT-qPCR analysis of SmCAT displayed a differential expression pattern in response to abiotic stresses. All the CAT proteins of eggplant were localized in the peroxisome, except for SmCAT4, which localized in the cytomembrane and nucleus. Silencing of SmCAT4 compromised the tolerance of eggplant to salt stress. Suppressed expression levels of salt stress defense related genes SmTAS14 and SmDHN1, as well as increase of H2O2 content and decrease of CAT enzyme activity was observed in the SmCAT4 silenced eggplants. Our data provided insightful knowledge of CAT gene family in eggplant. Positive regulation of eggplant response to salinity by SmCAT4 provides resource for future breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.S.); (X.X.); (L.Z.); (S.Y.)
| |
Collapse
|
9
|
Maruta N, Outram MA, Kobe B. Mildew RALPHs up in arms with cereals. Proc Natl Acad Sci U S A 2023; 120:e2311817120. [PMID: 37611066 PMCID: PMC10483659 DOI: 10.1073/pnas.2311817120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Megan A. Outram
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra, ACT2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
10
|
Cao Y, Kümmel F, Logemann E, Gebauer JM, Lawson AW, Yu D, Uthoff M, Keller B, Jirschitzka J, Baumann U, Tsuda K, Chai J, Schulze-Lefert P. Structural polymorphisms within a common powdery mildew effector scaffold as a driver of coevolution with cereal immune receptors. Proc Natl Acad Sci U S A 2023; 120:e2307604120. [PMID: 37523523 PMCID: PMC10410722 DOI: 10.1073/pnas.2307604120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.
Collapse
Affiliation(s)
- Yu Cao
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Florian Kümmel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Elke Logemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Jan M. Gebauer
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Aaron W. Lawson
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Dongli Yu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Matthias Uthoff
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich8008, Switzerland
| | - Jan Jirschitzka
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Ulrich Baumann
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Jijie Chai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne50674, Germany
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou310024, China
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| |
Collapse
|
11
|
Padilla-Roji I, Ruiz-Jiménez L, Bakhat N, Vielba-Fernández A, Pérez-García A, Fernández-Ortuño D. RNAi Technology: A New Path for the Research and Management of Obligate Biotrophic Phytopathogenic Fungi. Int J Mol Sci 2023; 24:ijms24109082. [PMID: 37240427 DOI: 10.3390/ijms24109082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.
Collapse
Affiliation(s)
- Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Laura Ruiz-Jiménez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Nisrine Bakhat
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandra Vielba-Fernández
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
12
|
Baker A, Lin CC, Lett C, Karpinska B, Wright MH, Foyer CH. Catalase: A critical node in the regulation of cell fate. Free Radic Biol Med 2023; 199:56-66. [PMID: 36775107 DOI: 10.1016/j.freeradbiomed.2023.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Catalase (CAT) is an extensively studied if somewhat enigmatic enzyme that is at the heart of eukaryotic antioxidant systems with a canonical role in peroxisomal function. The CAT family of proteins exert control over a wide range of plant growth and defence processes. CAT proteins are subject to many types of post-translational modification (PTM), which modify activity, ligand binding, stability, compartmentation and function. The CAT interactome involves many cytosolic and nuclear proteins that appear to be essential for protein functions. Hence, the CAT network of roles extends far beyond those associated with peroxisomal metabolism. Some pathogen effector proteins are able to redirect CAT to the nucleus and recent evidence indicates CAT can traffic to the nucleus in the absence of exogenous proteins. While the mechanisms that target CAT to the nucleus are not understood, CAT activity in the cytosol and nucleus is promoted by interactions with nucleoredoxin. Here we discuss recent findings that have been pivotal in generating a step change in our understanding of CAT functions in plant cells.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chi-Chuan Lin
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Casey Lett
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Megan H Wright
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine H Foyer
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Mostaffa NH, Suhaimi AH, Al-Idrus A. Interactomics in plant defence: progress and opportunities. Mol Biol Rep 2023; 50:4605-4618. [PMID: 36920596 DOI: 10.1007/s11033-023-08345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
Collapse
Affiliation(s)
- Nur Hikmah Mostaffa
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Husaini Suhaimi
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aisyafaznim Al-Idrus
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Hossen S, Sukhan ZP, Kim SC, Hanif MA, Kong IK, Kho KH. Molecular Cloning and Functional Characterization of Catalase in Stress Physiology, Innate Immunity, Testicular Development, Metamorphosis, and Cryopreserved Sperm of Pacific Abalone. Antioxidants (Basel) 2023; 12:antiox12010109. [PMID: 36670971 PMCID: PMC9854591 DOI: 10.3390/antiox12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of Pacific abalone. Hdh-CAT gene was cloned from the digestive gland (DG) of Pacific abalone. The 2894 bp sequence of Hdh-CAT had an open reading frame of 1506 bp encoding 501 deduced amino acids. Fluorescence in situ hybridization confirmed Hdh-CAT localization in the digestive tubules of the DG. Hdh-CAT was induced by different types of stress including thermal stress, H2O2 induction, and starvation. Immune challenges with Vibrio, lipopolysaccharides, and polyinosinic-polycytidylic acid sodium salt also upregulated Hdh-CAT mRNA expression and catalase activity. Hdh-CAT responded to cadmium induced-toxicity by increasing mRNA expression and catalase activity. Elevated seasonal temperature also altered Hdh-CAT mRNA expression. Hdh-CAT mRNA expression was relatively higher at the trochophore larvae stage of metamorphosis. Cryopreserved sperm showed significantly lower Hdh-CAT mRNA expression levels compared with fresh sperm. Hdh-CAT mRNA expression showed a relationship with the production of ROS. These results suggest that Hdh-CAT might play a role in stress physiology, innate immunity, testicular development, metamorphosis, and sperm cryo-tolerance of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Md. Abu Hanif
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
15
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
16
|
Mapuranga J, Zhang N, Zhang L, Chang J, Yang W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front Microbiol 2022; 13:799396. [PMID: 35722337 PMCID: PMC9201565 DOI: 10.3389/fmicb.2022.799396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
Biotrophic plant pathogenic fungi are widely distributed and are among the most damaging pathogenic organisms of agriculturally important crops responsible for significant losses in quality and yield. However, the pathogenesis of obligate parasitic pathogenic microorganisms is still under investigation because they cannot reproduce and complete their life cycle on an artificial medium. The successful lifestyle of biotrophic fungal pathogens depends on their ability to secrete effector proteins to manipulate or evade plant defense response. By integrating genomics, transcriptomics, and effectoromics, insights into how the adaptation of biotrophic plant fungal pathogens adapt to their host populations can be gained. Efficient tools to decipher the precise molecular mechanisms of rust–plant interactions, and standardized routines in genomics and functional pipelines have been established and will pave the way for comparative studies. Deciphering fungal pathogenesis not only allows us to better understand how fungal pathogens infect host plants but also provides valuable information for plant diseases control, including new strategies to prevent, delay, or inhibit fungal development. Our review provides a comprehensive overview of the efforts that have been made to decipher the effector proteins of biotrophic fungal pathogens and demonstrates how rapidly research in the field of obligate biotrophy has progressed.
Collapse
|