1
|
Yoval-Sánchez B, Guerrero I, Ansari F, Niatsetskaya Z, Siragusa M, Magrane J, Ten V, Konrad C, Szibor M, Galkin A. Effect of alternative oxidase (AOX) expression on mouse cerebral mitochondria bioenergetics. Redox Biol 2024; 77:103378. [PMID: 39368457 PMCID: PMC11491972 DOI: 10.1016/j.redox.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms. AOX expression did not compromise the function of the mammalian respiratory chain at physiological conditions, however the complex IV inhibitor cyanide only partially blocked respiration by AOX-containing mitochondria. The relative fraction of cyanide-insensitive respiration increased at lower temperatures, indicative of a temperature-controlled attenuation of mammalian respiratory enzyme activity. As AOX does not translocate protons, the mitochondrial transmembrane potential in AOX-containing mitochondria was more sensitive to cyanide during succinate oxidation than during malate/pyruvate-supported respiration. High concentrations of cyanide fully collapsed membrane potential during oxidation of either succinate or glycerol 3-phosphate, but not during malate/pyruvate-supported respiration. This confirms AOX's electroneutral redox activity and indicates differences in the proton-translocating capacity of dehydrogenases upstream of the ubiquinone pool. Our respiration data refutes previous proposals for quinone partitioning within the supercomplexes of the respiratory chain, instead supporting the concept of a single homogeneous, freely diffusing quinone pool. Respiration with either succinate or glycerol 3-phosphate promotes reverse electron transfer (RET) towards complex I. AOX expression significantly decreased RET-induced ROS generation, with the effect more pronounced at low temperatures. Inhibitor-sensitivity analysis showed that the AOX-induced decrease in H2O2 release is due to the lower contribution of complex I to net ROS production during RET. Overall, our findings provide new insights into the role of temperature as a mechanism to control respiration and highlight the utility of AOX as a genetic tool to characterize both the distinct pathways of oxygen reduction and the role of redox control in RET.
Collapse
Affiliation(s)
- Belem Yoval-Sánchez
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Ivan Guerrero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Zoya Niatsetskaya
- Departments of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Max Siragusa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Jordi Magrane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Vadim Ten
- Departments of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany; Faculty of Medicine and Health Technology, 33014, Tampere University, Finland
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
3
|
Sankar TV, Saharay M, Santhosh D, Menon S, Raran-Kurussi S, Padmasree K. Biomolecular interaction of purified recombinant Arabidopsis thaliana's alternative oxidase 1A with TCA cycle metabolites: Biophysical and molecular docking studies. Int J Biol Macromol 2024; 258:128814. [PMID: 38114006 DOI: 10.1016/j.ijbiomac.2023.128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
In higher plants, the mitochondrial alternative oxidase (AOX) pathway plays an essential role in maintaining the TCA cycle/cellular carbon and energy balance under various physiological and stress conditions. Though the activation of AOX pathway upon exogenous addition of α-ketoacids/TCA cycle metabolites [pyruvate, α-ketoglutarate (α-KG), oxaloacetic acid (OAA), succinate and malic acid] to isolated mitochondria is known, the molecular mechanism of interaction of these metabolites with AOX protein is limited. The present study is designed to understand the biomolecular interaction of pure recombinant Arabidopsis thaliana AOX1A with TCA cycle metabolites under in vitro conditions using various biophysical and molecular docking studies. The binding of α-KG, fumaric acid and OAA to rAtAOX1A caused conformational change in the microenvironment of tryptophan residues as evidenced by red shift in the synchronous fluorescence spectra (∆λ = 60 nm). Besides, a decrease in conventional fluorescence emission spectra, tyrosine specific synchronous fluorescence spectra (∆λ = 15 nm) and α-helical content of CD spectra revealed the conformation changes in rAtAOX1A structure associated with binding of various TCA cycle metabolites. Further, surface plasmon resonance (SPR) and microscale thermophoresis (MST) studies revealed the binding affinity, while docking studies identified binding pocket residues, respectively, for these metabolites on rAtAOX1A.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Saji Menon
- Senior Field Application Scientist, Nanotemper Technologies GmbH, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500107, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
4
|
Lenaz G, Nesci S, Genova ML. Understanding differential aspects of microdiffusion (channeling) in the Coenzyme Q and Cytochrome c regions of the mitochondrial respiratory system. Mitochondrion 2024; 74:101822. [PMID: 38040170 DOI: 10.1016/j.mito.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Over the past decades, models of the organization of mitochondrial respiratory system have been controversial. The goal of this perspective is to assess this "conflict of models" by focusing on specific kinetic evidence in the two distinct segments of Coenzyme Q- and Cytochrome c-mediated electron transfer. Respiratory supercomplexes provide kinetic advantage by allowing a restricted diffusion of Coenzyme Q and Cytochrome c, and short-range interaction with their partner enzymes. In particular, electron transfer from NADH is compartmentalized by channeling of Coenzyme Q within supercomplexes, whereas succinate oxidation proceeds separately using the free Coenzyme Q pool. Previous evidence favoring Coenzyme Q random diffusion in the NADH-dependent electron transfer is due to downstream flux interference and misinterpretation of results. Indeed, electron transfer by complexes III and IV via Cytochrome c is less strictly dependent on substrate channeling in mammalian mitochondria. We briefly describe these differences and their physiological implications.
Collapse
Affiliation(s)
- Giorgio Lenaz
- University of Bologna, Via Zamboni 33, 40126 Bologna, Italy.
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Maria Luisa Genova
- Department of Biomedical and Neuromotor Sciences, O.U. Biochemistry, University of Bologna, Via Irnerio 48, 40126 Bologna, BO, Italy.
| |
Collapse
|
5
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Yuan S, Yan R, Lin B, Li R, Ye X. Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Biochem Biophys Res Commun 2023; 653:69-75. [PMID: 36857902 DOI: 10.1016/j.bbrc.2023.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
The medium-temperature alpha-amylase of Bacillus amyloliquefaciens is widely used in the food and washing process. Enhancing the thermostability of alpha-amylases and investigating the mechanism of stability are important for enzyme industry development. The optimal temperature and pH of the wild-type BAA and mutant MuBAA (D28E/V118A/S187D/K370 N) were all 60 °C and 6.0, respectively. The mutant MuBAA showed better thermostability at 50 °C and 60 °C, with a specific activity of 206.61 U/mg, which was 99.1% greater than that of the wild-type. By analyzing predicted structures, the improving thermostability of the mutant MuBAA was mainly related to enhanced stabilization of a loop region in domain B via more calcium-binding sites and intramolecular interactions around Asp187. Furthermore, additional intramolecular interactions around sites 28 and 370 in domain A were also beneficial for improving thermostability. Additionally, the decrease of steric hindrance at the active cavity increased the specific activity of the mutant MuBAA. Improving the thermostability of BAA has theoretical reference values for the modification of alpha-amylases.
Collapse
Affiliation(s)
- Susu Yuan
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Renxiang Yan
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Biyu Lin
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Renkuan Li
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Dunn AK. Alternative oxidase in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148929. [PMID: 36265564 DOI: 10.1016/j.bbabio.2022.148929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
While alternative oxidase (AOX) was discovered in bacteria in 2003, the expression, function, and evolutionary history of this protein in these important organisms is largely unexplored. To date, expression and functional analysis is limited to studies in the Proteobacteria Novosphingobium aromaticivorans and Vibrio fischeri, where AOX likely plays roles in maintenance of cellular energy homeostasis and supporting responses to cellular stress. This review describes the history of the study of AOX in bacteria, details current knowledge of the predicted biochemical and structural characteristics, distribution, and function of bacterial AOX, and highlights interesting areas for the future study of AOX in bacteria.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
8
|
Sankar TV, Saharay M, Santhosh D, Vishwakarma A, Padmasree K. Structural and Biophysical Characterization of Purified Recombinant Arabidopsis thaliana's Alternative Oxidase 1A (rAtAOX1A): Interaction With Inhibitor(s) and Activator. FRONTIERS IN PLANT SCIENCE 2022; 13:871208. [PMID: 35783971 PMCID: PMC9243770 DOI: 10.3389/fpls.2022.871208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 05/14/2023]
Abstract
In higher plants, alternative oxidase (AOX) participates in a cyanide resistant and non-proton motive electron transport pathway of mitochondria, diverging from the ubiquinone pool. The physiological significance of AOX in biotic/abiotic stress tolerance is well-documented. However, its structural and biophysical properties are poorly understood as its crystal structure is not yet revealed in plants. Also, most of the AOX purification processes resulted in a low yield/inactive/unstable form of native AOX protein. The present study aims to characterize the purified rAtAOX1A protein and its interaction with inhibitors, such as salicylhydroxamic acid (SHAM) and n-propyl gallate (n-PG), as well as pyruvate (activator), using biophysical/in silico studies. The rAtAOX1A expressed in E. coli BL21(DE3) cells was functionally characterized by monitoring the respiratory and growth sensitivity of E. coli/pAtAOX1A and E. coli/pET28a to classical mitochondrial electron transport chain (mETC) inhibitors. The rAtAOX1A, which is purified through affinity chromatography and confirmed by western blotting and MALDI-TOF-TOF studies, showed an oxygen uptake activity of 3.86 μmol min-1 mg-1 protein, which is acceptable in non-thermogenic plants. Circular dichroism (CD) studies of purified rAtAOX1A revealed that >50% of the protein content was α-helical and retained its helical absorbance signal (ellipticity) at a wide range of temperature and pH conditions. Further, interaction with SHAM, n-PG, or pyruvate caused significant changes in its secondary structural elements while retaining its ellipticity. Surface plasmon resonance (SPR) studies revealed that both SHAM and n-PG bind reversibly to rAtAOX1A, while docking studies revealed that they bind to the same hydrophobic groove (Met191, Val192, Met195, Leu196, Phe251, and Phe255), to which Duroquinone (DQ) bind in the AtAOX1A. In contrast, pyruvate binds to a pocket consisting of Cys II (Arg174, Tyr175, Gly176, Cys177, Val232, Ala233, Asn294, and Leu313). Further, the mutational docking studies suggest that (i) the Met195 and Phe255 of AtAOX1A are the potential candidates to bind the inhibitor. Hence, this binding pocket could be a 'potential gateway' for the oxidation-reduction process in AtAOX1A, and (ii) Arg174, Gly176, and Cys177 play an important role in binding to the organic acids like pyruvate.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Kollipara Padmasree
| |
Collapse
|