1
|
Zhou Y, Jiang P, Ding Y, Zhang Y, Yang S, Liu X, Cao C, Luo G, Ou L. Deciphering the Distinct Associations of Rhizospheric and Endospheric Microbiomes with Capsicum Plant Pathological Status. MICROBIAL ECOLOGY 2025; 88:1. [PMID: 39890664 PMCID: PMC11785608 DOI: 10.1007/s00248-025-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Exploring endospheric and rhizospheric microbiomes and their associations can help us to understand the pathological status of capsicum (Capsicum annuum L.) for implementing appropriate management strategies. To elucidate the differences among plants with distinct pathological status in the communities and functions of the endospheric and rhizospheric microbiomes, the samples of healthy and diseased capsicum plants, along with their rhizosphere soils, were collected from a long-term cultivation field. The results indicated a higher bacterial richness in the healthy rhizosphere than in the diseased rhizosphere (P < 0.05), with rhizospheric bacterial diversity surpassing endospheric bacterial diversity. The community assemblies of both the endospheric and rhizospheric microbiomes were driven by a combination of stochastic and deterministic processes, with the stochastic processes playing a primary role. The majority of co-enriched taxa in the healthy endophyte and rhizosphere mainly belonged to bacterial Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal Ascomycota. Most of the bacterial indicators, primarily Alphaproteobacteria and Actinobacteria, were enriched in the healthy rhizosphere, but not in the diseased rhizosphere. In addition, most of the fungal indicators were enriched in both the healthy and diseased endosphere. The diseased endophyte constituted a less complex and stable microbial community than the healthy endophyte, and meanwhile, the diseased rhizosphere exhibited a higher complexity but lower stability than the healthy rhizosphere. Notably, only a microbial function, namely biosynthesis of other secondary metabolites, was higher in the healthy endophytes than in the diseased endophyte. These findings indicated the distinct responses of rhizospheric and endospheric microbiomes to capsicum pathological status, and in particular, provided a new insight into leveraging soil and plant microbial resources to enhance agriculture production.
Collapse
Affiliation(s)
- Yingying Zhou
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Pan Jiang
- Hunan Agricultural University, Changsha, 410128, China
| | - Yuanyuan Ding
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Yuping Zhang
- Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Sha Yang
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Xinhua Liu
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Gongwen Luo
- Hunan Agricultural University, Changsha, 410128, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| | - Lijun Ou
- Hunan Agricultural University, Changsha, 410128, China.
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China.
| |
Collapse
|
2
|
Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, Muthurajan R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol 2024; 175:104217. [PMID: 38857835 DOI: 10.1016/j.resmic.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
Collapse
Affiliation(s)
- Navarasu Sivaprakasam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Swarnakumari Narayanan
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P S Kavitha
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|