1
|
Wang X, Li Y, Hao Y, Kang E, Han J, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X, Yan Z. Soil temperature and fungal diversity jointly modulate soil heterotrophic respiration under short-term warming in the Zoige alpine peatland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122778. [PMID: 39393334 DOI: 10.1016/j.jenvman.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/26/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Global warming has changed carbon cycling in terrestrial ecosystems, but it remains unclear how climate warming affects soil heterotrophic respiration (Rh). We conducted a field experiment in the Zoige alpine peatland to investigate the mechanism of how short-term warming affects Rh by examining the relationships between plant biomass, soil properties, soil microbial diversity, and functional groups and Rh. Our results showed that warming increased Rh after one growing season of warming. However, warming barely changed the bacterial functional groups involved in the carbon cycle predicted by the functional annotation analysis. According to the Mantel test, NO3- was found to be the primary determinant for bacterial and fungal communities. The results of the Structural Equation Model (SEM) indicate that soil temperature and fungal diversity jointly modulate Rh, suggesting that short-term warming may not affect Rh by altering the structural and functional composition of microorganisms, which provides new insight into the mechanisms of the effects of warming on Rh in terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yanbin Hao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enze Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Han
- The Management Bureau of Zoige Wetland National Nature Reserve, Zoige, 624500, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| |
Collapse
|
2
|
Zhuang W, Li Y, Kang X, Yan L, Zhang X, Yan Z, Zhang K, Yang A, Niu Y, Yu X, Wang H, An M, Che R. Changes in soil oxidase activity induced by microbial life history strategies mediate the soil heterotrophic respiration response to drought and nitrogen enrichment. Front Microbiol 2024; 15:1375300. [PMID: 38559350 PMCID: PMC10978626 DOI: 10.3389/fmicb.2024.1375300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Drought and nitrogen deposition are two major climate challenges, which can change the soil microbial community composition and ecological strategy and affect soil heterotrophic respiration (Rh). However, the combined effects of microbial community composition, microbial life strategies, and extracellular enzymes on the dynamics of Rh under drought and nitrogen deposition conditions remain unclear. Here, we experimented with an alpine swamp meadow to simulate drought (50% reduction in precipitation) and multilevel addition of nitrogen to determine the interactive effects of microbial community composition, microbial life strategy, and extracellular enzymes on Rh. The results showed that drought significantly reduced the seasonal mean Rh by 40.07%, and increased the Rh to soil respiration ratio by 22.04%. Drought significantly altered microbial community composition. The ratio of K- to r-selected bacteria (BK:r) and fungi (FK:r) increased by 20 and 91.43%, respectively. Drought increased hydrolase activities but decreased oxidase activities. However, adding N had no significant effect on microbial community composition, BK:r, FK:r, extracellular enzymes, or Rh. A structural equation model showed that the effects of drought and adding nitrogen via microbial community composition, microbial life strategy, and extracellular enzymes explained 84% of the variation in Rh. Oxidase activities decreased with BK:r, but increased with FK:r. Our findings show that drought decreased Rh primarily by inhibiting oxidase activities, which is induced by bacterial shifts from the r-strategy to the K-strategy. Our results highlight that the indirect regulation of drought on the carbon cycle through the dynamic of bacterial and fungal life history strategy should be considered for a better understanding of how terrestrial ecosystems respond to future climate change.
Collapse
Affiliation(s)
- Weirong Zhuang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan University, Kunming, China
| | - Yong Li
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Xiaoming Kang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Liang Yan
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Xiaodong Zhang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Zhongqing Yan
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Kerou Zhang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Ao Yang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Yuechuan Niu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshun Yu
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Huan Wang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Miaomiao An
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Qu Q, Wang Z, Gan Q, Liu R, Xu H. Impact of drought on soil microbial biomass and extracellular enzyme activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221288. [PMID: 37692424 PMCID: PMC10491016 DOI: 10.3389/fpls.2023.1221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Introduction With the continuous changes in climate patterns due to global warming, drought has become an important limiting factor in the development of terrestrial ecosystems. However, a comprehensive understanding of the impact of drought on soil microbial activity at a global scale is lacking. Methods In this study, we aimed to examine the effects of drought on soil microbial biomass (carbon [MBC], nitrogen [MBN], and phosphorus [MBP]) and enzyme activity (β-1, 4-glucosidase [BG]; β-D-cellobiosidase [CBH]; β-1, 4-N-acetylglucosaminidase [NAG]; L-leucine aminopeptidase [LAP]; and acid phosphatase [AP]). Additionally, we conducted a meta-analysis to determine the degree to which these effects are regulated by vegetation type, drought intensity, drought duration, and mean annual temperature (MAT). Result and discussion Our results showed that drought significantly decreased the MBC, MBN, and MBP and the activity levels of BG and AP by 22.7%, 21.2%, 21.6%, 26.8%, and 16.1%, respectively. In terms of vegetation type, drought mainly affected the MBC and MBN in croplands and grasslands. Furthermore, the response ratio of BG, CBH, NAG, and LAP were negatively correlated with drought intensity, whereas MBN and MBP and the activity levels of BG and CBH were negatively correlated with drought duration. Additionally, the response ratio of BG and NAG were negatively correlated with MAT. In conclusion, drought significantly reduced soil microbial biomass and enzyme activity on a global scale. Our results highlight the strong impact of drought on soil microbial biomass and carbon- and phosphorus-acquiring enzyme activity.
Collapse
Affiliation(s)
- Qing Qu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhen Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Quan Gan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Rentao Liu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Hongwei Xu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Yan Z, Kang E, Zhang K, Hao Y, Wang X, Li Y, Li M, Wu H, Zhang X, Yan L, Zhang W, Li J, Yang A, Niu Y, Kang X. Asynchronous responses of microbial CAZymes genes and the net CO 2 exchange in alpine peatland following 5 years of continuous extreme drought events. ISME COMMUNICATIONS 2022; 2:115. [PMID: 37938678 PMCID: PMC9723601 DOI: 10.1038/s43705-022-00200-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2023]
Abstract
Peatlands act as an important sink of carbon dioxide (CO2). Yet, they are highly sensitive to climate change, especially to extreme drought. The changes in the net ecosystem CO2 exchange (NEE) under extreme drought events, and the driving function of microbial enzymatic genes involved in soil organic matter (SOM) decomposition, are still unclear. Herein we investigated the effects of extreme drought events in different periods of plant growth season at Zoige peatland on NEE and microbial enzymatic genes of SOM decomposition after 5 years. The results showed that the NEE of peatland decreased significantly by 48% and 26% on average (n = 12, P < 0.05) under the early and midterm extreme drought, respectively. The microbial enzymatic genes abundance of SOM decomposition showed the same decreasing trend under early and midterm extreme drought, but an increasing trend under late extreme drought. The microbial community that contributes to these degradation genes mainly derives from Proteobacteria and Actinobacteria. NEE was mainly affected by soil hydrothermal factors and gross primary productivity but weakly correlated with SOM enzymatic decomposition genes. Soil microbial respiration showed a positive correlation with microbial enzymatic genes involved in the decomposition of labile carbon (n = 18, P < 0.05). This study provided new insights into the responses of the microbial decomposition potential of SOM and ecosystem CO2 sink function to extreme drought events in the alpine peatland.
Collapse
Affiliation(s)
- Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Enze Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Haidong Wu
- Information Center of Ministry of Ecology and Environment, 100029, Beijing, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Wantong Zhang
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China
| | - Yuechuan Niu
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100091, Beijing, China.
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Ngawa, 624500, China.
- Beijing Key Laboratory of Wetland Services and Restoration, 100091, Beijing, China.
| |
Collapse
|
5
|
Sun J, Wang Y, Liu S, Li J, Zhou H, Wu G, Haregeweyn N. Editorial: Patterns, functions, and processes of alpine grassland ecosystems under global change. FRONTIERS IN PLANT SCIENCE 2022; 13:1048031. [PMID: 36311090 PMCID: PMC9608754 DOI: 10.3389/fpls.2022.1048031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Jian Sun
- State Key Laboratory of Earth System Resources and Environment of Tibetan Plateau, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yingxin Wang
- State Key Laboratory of Earth System Resources and Environment of Tibetan Plateau, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junran Li
- Department of Geography, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Gaolin Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Nigussie Haregeweyn
- International Platform for Dryland Research and Education, Arid Land Research Center, Tottori University, Tottori, Japan
| |
Collapse
|
6
|
Wang X, Li Y, Yan Z, Hao Y, Kang E, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X. The divergent vertical pattern and assembly of soil bacterial and fungal communities in response to short-term warming in an alpine peatland. FRONTIERS IN PLANT SCIENCE 2022; 13:986034. [PMID: 36160969 PMCID: PMC9493461 DOI: 10.3389/fpls.2022.986034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial communities are crucial in ecosystem-level decomposition and nutrient cycling processes and are sensitive to climate change in peatlands. However, the response of the vertical distribution of microbial communities to warming remains unclear in the alpine peatland. In this study, we examined the effects of warming on the vertical pattern and assembly of soil bacterial and fungal communities across three soil layers (0-10, 10-20, and 20-30 cm) in the Zoige alpine peatland under a warming treatment. Our results showed that short-term warming had no significant effects on the alpha diversity of either the bacterial or the fungal community. Although the bacterial community in the lower layers became more similar as soil temperature increased, the difference in the vertical structure of the bacterial community among different treatments was not significant. In contrast, the vertical structure of the fungal community was significantly affected by warming. The main ecological process driving the vertical assembly of the bacterial community was the niche-based process in all treatments, while soil carbon and nutrients were the main driving factors. The vertical structure of the fungal community was driven by a dispersal-based process in control plots, while the niche and dispersal processes jointly regulated the fungal communities in the warming plots. Plant biomass was significantly related to the vertical structure of the fungal community under the warming treatments. The variation in pH was significantly correlated with the assembly of the bacterial community, while soil water content, microbial biomass carbon/microbial biomass phosphorous (MBC/MBP), and microbial biomass nitrogen/ microbial biomass phosphorous (MBN/MBP) were significantly correlated with the assembly of the fungal community. These results indicate that the vertical structure and assembly of the soil bacterial and fungal communities responded differently to warming and could provide a potential mechanism of microbial community assembly in the alpine peatland in response to warming.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Enze Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yuechuan Niu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| |
Collapse
|
7
|
Yang A, Kang X, Li Y, Zhang X, Zhang K, Kang E, Yan Z, Li M, Wang X, Niu Y, Yan L. Alpine wetland degradation reduces carbon sequestration in the Zoige Plateau, China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.980441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpine wetland plays an important role in the global carbon balance but are experiencing severe degradation under climate change and human activities. With the aim to clarify the effect of alpine wetland degradation on carbon fluxes (including net ecosystem CO2 exchange, NEE; ecosystem respiration, ER; gross ecosystem productivity, GEP, and CH4 flux), we investigated 12 sites and measured carbon fluxes using the static chamber method in the Zoige alpine wetland during August 2018, including undegraded wetland (UD), lightly degraded wetland (LD), moderately degraded wetland (MD), and severely degraded wetland (SD). The results showed that carbon sink strengths differ among the Zoige wetlands with different degradation stages during the growing season. From UD to LD, the rate of carbon sequestration (mean value of NEE) increased by 25.70%; however, from LD to SD, it decreased by 81.67%. Wetland degradation significantly reduced soil water content (SWC), soil organic carbon (SOC), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN). NEE was significantly correlated with MBC and MBN, while ER was positively correlated with ST but negatively correlated with SOC (P < 0.01). Among all measured environmental factors, GEP was positively correlated with pH (P < 0.01), while CH4 flux was most closely correlated with SOC, SWC, MBC, MBN, and ST (P < 0.001), and was also affected by pH and NO3– content (P < 0.01). These results suggest that the capacity of carbon sequestration in the Zoige wetlands reduced with intensification of the degradation. This study provides a reference for sustainably managing and utilizing degraded wetlands under climate change.
Collapse
|
8
|
Qian R, Hao Y, Li L, Zheng Z, Wen F, Cui X, Wang Y, Zhao T, Tang Z, Du J, Xue K. Joint control of seasonal timing and plant function types on drought responses of soil respiration in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:974418. [PMID: 36046587 PMCID: PMC9421296 DOI: 10.3389/fpls.2022.974418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Globally, droughts are the most widespread climate factor impacting carbon (C) cycling. However, as the second-largest terrestrial C flux, the responses of soil respiration (Rs) to extreme droughts co-regulated by seasonal timing and PFT (plant functional type) are still not well understood. Here, a manipulative extreme-duration drought experiment (consecutive 30 days without rainfall) was designed to address the importance of drought timing (early-, mid-, or late growing season) for Rs and its components (heterotrophic respiration (Rh) and autotrophic respiration (Ra)) under three PFT treatments (two graminoids, two shrubs, and their combination). The results suggested that regardless of PFT, the mid-drought had the greatest negative effects while early-drought overall had little effect on Rh and its dominated Rs. However, PFT treatments had significant effects on Rh and Rs in response to the late drought, which was PFT-dependence: reduction in shrubs and combination but not in graminoids. Path analysis suggested that the decrease in Rs and Rh under droughts was through low soil water content induced reduction in MBC and GPP. These findings demonstrate that responses of Rs to droughts depend on seasonal timing and communities. Future droughts with different seasonal timing and induced shifts in plant structure would bring large uncertainty in predicting C dynamics under climate changes.
Collapse
Affiliation(s)
- Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fuqi Wen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhao
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Tang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Li M, Zhang K, Yan Z, Liu L, Kang E, Kang X. Soil Water Content Shapes Microbial Community Along Gradients of Wetland Degradation on the Tibetan Plateau. Front Microbiol 2022; 13:824267. [PMID: 35185848 PMCID: PMC8847787 DOI: 10.3389/fmicb.2022.824267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Soil microbes are important components in element cycling and nutrient supply for the development of alpine ecosystems. However, the development of microbial community compositions and networks in the context of alpine wetland degradation is unclear. We applied high-throughput 16S rRNA gene amplicon sequencing to track changes in microbial communities along degradation gradients from typical alpine wetland (W), to wet meadow (WM), to typical meadow (M), to grassland (G), and to desert (D) in the Zoige alpine wetland region on the Tibetan Plateau. Soil water content (SWC) decreased as wetland degradation progressed (79.4 and 9.3% in W and D soils, respectively). Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) increased in the soils of WM, and then decreased with alpine wetlands degradation from WM to the soils of M, G, and D, respectively. Wetland degradation did not affect microbial community richness and diversity from W soils to WM, M, and G soils, but did affect richness and diversity in D soils. Microbial community structure was strongly affected by wetland degradation, mainly due to changes in SWC, TOC, TN, and TP. SWC was the primary soil physicochemical property influencing microbial community compositions and networks. In wetland degradation areas, Actinobacteriota, Acidobacteriota, Cholorflexi, and Proteovacteria closely interacted in the microbial network. Compared to soils of W, WM, and M, Actinobacteriota played an important role in the microbial co-occurrence network of the G and D soils. This research contributes to our understanding of how microbial community composition and networks change with varied soil properties during degradation of different alpine wetlands.
Collapse
Affiliation(s)
- Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China.,Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China.,Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China
| | - Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China.,Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China.,Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China.,Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China.,Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China
| | - Liang Liu
- National Disaster Reduction Center of China, Ministry of Emergency Management, Beijing, China.,Satellite Application Center for Disaster Reduction, Ministry of Emergency Management, Beijing, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China.,Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China.,Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China.,Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China.,Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China
| |
Collapse
|