1
|
Herbert L, Vernet A, Frouin J, Meunier AC, Di Mattia J, Wang M, Sidhu GK, Mathis L, Nicolas A, Guiderdoni E, Fayos I. dCas9-SPO11-1 locally stimulates meiotic recombination in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1580225. [PMID: 40376157 PMCID: PMC12078263 DOI: 10.3389/fpls.2025.1580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025]
Abstract
Introduction Meiotic crossovers shuffle the genetic information transmitted by the gametes. However, the potential to recover all the combinations of the parental alleles remains limited in most organisms, including plants, by the occurrence of only few crossovers per chromosome and a prominent bias in their spatial distribution. Thus, novel methods for stimulating recombination frequencies and/or modifying their location are highly desired to accelerate plant breeding. Methods Here, we investigate the use of a dCas9-SPO11-1 fusion and clusters of 11 gRNAs to alter meiotic recombination in two chromosomal regions of a rice hybrid (KalingaIII/Kitaake). To accurately genotype rare recombinants in regions of few kbp, we improved the digital PCR-based pollen-typing method in parallel. Results Expression of the dCas9-SPO11-1 fusion protein under the ubiquitous ZmUbi1 promoter was obtained in leaves/anthers/meiocytes and found to complement the sterility of the Osspo11-1 mutant line. We observed a 3.27-fold increase over wild-type (p<0.001) of recombinant pollens in a transgenic hybrid line (7a) targeting a chromosome 7 region. In the offspring plant 7a1, a significant 2.05-fold increase (p=0.048) was observed in the central interval (7.2 kb) of the Chr. 7 target region. This stimulation of meiotic recombination is consistent with the expression of the dCas9-SPO11-1 fusion and gRNAs as well as with the ChIP-revealed binding of dCas9-SPO11-1 to the targeted region. In contrast, no stimulation was observed in other transgenic lines deficient in the above pre-requisite features, expressing the dCas9-SPO11-1 fusion but no gRNAs or targeting a Chr.9 region. Discussion These results open new avenues to locally stimulate meiotic recombination in crop genomes and paves the way for a future implementation in plant breeding programs.
Collapse
Affiliation(s)
| | - Aurore Vernet
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Julien Frouin
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Anne Cécile Meunier
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | - Jeremy Di Mattia
- Ingénierie et Analyse en Génétique Environnementale (IAGE), Montpellier, France
| | - Minghui Wang
- Meiogenix Inc., Center for Life Science Ventures Cornell University, Ithaca, NY, United States
| | - Gaganpreet K. Sidhu
- Meiogenix Inc., Center for Life Science Ventures Cornell University, Ithaca, NY, United States
| | | | - Alain Nicolas
- Meiogenix SA, Paris, France
- IRCAN (Institute for Research on Cancer and Aging), CNRS (Centre national de la recherche scientifique) UMR7284, INSERM (Institut national de la santé et de la recherche médicale) U1081, Université Côte d’Azur, Nice, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Montpellier, France
- Unité mixte de recherche - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Institut, Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Montpellier, France
| | | |
Collapse
|
2
|
Tan Q, Zhang X, Luo Q, Xu YC, Zhang J, Liang WQ. The RING Domain of Rice HEI10 is Essential for Male, But Not Female Fertility. RICE (NEW YORK, N.Y.) 2024; 17:3. [PMID: 38180592 PMCID: PMC10769960 DOI: 10.1186/s12284-023-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.
Collapse
Affiliation(s)
- Qian Tan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chun Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Qi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Rao Y, Yang X, Pan C, Wang C, Wang K. Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:839001. [PMID: 35645999 PMCID: PMC9133846 DOI: 10.3389/fpls.2022.839001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 is the third generation of novel targeted genome editing technology after zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). It is also one of the most promising techniques for mutating and modifying genes. The CRISPR-Cas9 system has the advantages of simplicity, high efficiency, high specificity, and low production cost, thus greatly promoting the study of gene function. Meanwhile, it has attracted the attention of biologists. After the development and improvement in recent years, CRISPR-Cas9 system has become increasingly mature and has been widely used in crop improvement. Firstly, this review systematically summarizes the generation and advantages of CRISPR-Cas9 system. Secondly, three derivative technologies of the CRISPR-Cas9 system are introduced. Thirdly, this review focuses on the application of CRISPR-Cas9 system in gene knockout, gene knock-in, and gene regulation, as well as the improvement of yield, quality, and biological resistance of important crops such as rice, wheat, soybean, corn, and potato. Finally, this review proposes the potential challenges of CRISPR-Cas9 system, and discusses the future development of CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xi Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chenyang Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
5
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
6
|
Zhang Z, Wang J, Xing G, Li M, Li S. Integrating physiology, genetics, and transcriptome to decipher a new thermo-sensitive and light-sensitive virescent leaf gene mutant in cucumber. FRONTIERS IN PLANT SCIENCE 2022; 13:972620. [PMID: 36051299 PMCID: PMC9424728 DOI: 10.3389/fpls.2022.972620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Chloroplasts are the material basis of photosynthesis, and temperature and light severely affect chloroplast development and thus influence photosynthetic efficiency. This study identified a spontaneous virescent leaf mutant, SC311Y, whose cotyledons and true leaves were yellow and gradually turned green. However, temperature and light affected the process of turning green. In addition, this mutant (except at the seedling stage) had ruffled leaves with white stripes, sterile males, and poorly fertile female flowers. Genetic characteristics analysis revealed that the recessive gene controlled the virescent leaf. Two F2 populations mapped v-3 to the interval of 33.54-35.66 Mb on chromosome 3. In this interval, BSA-Seq, RNA-Seq, and cDNA sequence analyses revealed only one nonsynonymous mutation in the Csa3G042730 gene, which encoded the RNA exosome supercomplex subunit resurrection1 (RST1). Csa3G042730 was predicted to be the candidate gene controlling the virescent leaf, and the candidate gene may regulate chloroplast development by regulating plastid division2 (PDV2). A transcriptome analysis showed that different factors caused the reduced chlorophyll and carotenoid content in the mutants. To our knowledge, this study is the first report of map-based cloning related to virescent leaf, male-sterile, and chloroplast RNA regulation in cucumber. The results could accelerate the study of the RNA exosome supercomplex for the dynamic regulation of chloroplast RNA.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- *Correspondence: Meilan Li,
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- Sen Li,
| |
Collapse
|