1
|
Wang H, Wei L, Yu F, Zeng T, Gu L, Zhu B, Du X. The sorghum SbMPK3-SbNAC074 module involved in salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109981. [PMID: 40327899 DOI: 10.1016/j.plaphy.2025.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Plant NAC transcription factors (TFs) are essential genes that modulate plant responses to abiotic stress. In this study, we identified a novel NAC TF, SbNAC074, in sorghum, which exhibits a response to salt stress. Overexpression of SbNAC074 in tobacco significantly enhanced the salt tolerance of transgenic plants. Measurements of stress-related physiological indicators revealed that the overexpression of SbNAC074 led to a reduction in the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2), while simultaneously increasing the activities of key enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Furthermore, we identified SbMPK3, the interacting protein of SbNAC074, and established that SbMPK3 can phosphorylate SbNAC074. Consequently, this study elucidates the function of SbNAC074 and identifies the SbMPK3-SbNAC074 regulatory pathway, thereby providing new insights into the mechanisms underlying salt stress responses in sorghum.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Lan Wei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Feng Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China.
| |
Collapse
|
2
|
Wang J, Ding C, Cui C, Song J, Ji G, Sun N, Qi S, Li J, Xu Z, Zhang H. Physiological and molecular responses of poplar to salt stress and functional analysis of PagGRXC9 to salt tolerance. TREE PHYSIOLOGY 2025; 45:tpaf039. [PMID: 40143418 DOI: 10.1093/treephys/tpaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Soil salinization is increasingly recognized as a critical environmental challenge that significantly threatens plant survival and agricultural productivity. To elucidate the mechanism of salt resistance in poplar, physiological and transcriptomic analyses were conducted on 84K poplar (Populus alba × Populus glandulosa) under varying salt concentrations (0, 100, 200 and 300 mM NaCl). As salt levels increased, observable damage to poplar progressively intensified. Differentially expressed genes under salt stress were primarily enriched in photosynthesis, redox activity and glutathione metabolism pathways. Salt stress reduced chlorophyll content and net photosynthetic rate, accompanied by the downregulation of photosynthesis-related genes. NaCl (300 mM) significantly inhibited the photochemical activity of photosystems. The higher photochemical activity under 100 and 200 mM NaCl was attributed to the activated PGR5-cyclic electron flow photoprotective mechanism. However, the NAD(P)H dehydrogenase-like (NDH)-cyclic electron flow was inhibited under all salt levels. Salt stress led to reactive oxygen species accumulation, activating the ASA-GSH cycle and antioxidant enzymes to mitigate oxidative damage. Weighted gene co-expression network analysis showed that five photosynthesis-related hub genes (e.g., FNR and TPI) were down-regulated and nine antioxidant-related hub genes (e.g., GRX, GPX and GST) were up-regulated under salt stress conditions. PagGRXC9 encodes glutaredoxin and was found to be differentially expressed during the salt stress condition. Functional studies showed that overexpressing PagGRXC9 enhanced salt tolerance in yeast, and in poplar, it improved growth, FV/FM, non-photochemical quenching values and resistance to H2O2-induced oxidative stress under salt stress. This study constructed the photosynthetic and antioxidant response network for salt stress in poplar, revealing that PagGRXC9 enhances salt tolerance by reducing photoinhibition and increasing antioxidant capacity. These findings provide valuable insights for breeding salt-tolerant forest trees.
Collapse
Affiliation(s)
- Jiechen Wang
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, 35 Qinghua East Road, Haidian District, Beijing 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, 35 Qinghua East Road, Haidian District, Beijing 100091, China
| | - Congcong Cui
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Jiaqi Song
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Guangxin Ji
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Nan Sun
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Siyue Qi
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Jie Li
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
3
|
Mondal S, Jespersen D. Understanding salinity tolerance mechanisms in finger millet through metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109742. [PMID: 40088583 DOI: 10.1016/j.plaphy.2025.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Finger millet (Eleusine coracana Gaertn L.) is an underutilized but nutritionally rich climate resilient food crop that is generally cultivated on marginal lands. Soil salinization is a major abiotic stress that leads to a reduction in growth and yield by affecting various physiological and metabolic processes in plants. The existence of genotypic variation for salt tolerance in finger millet indicates the possibility of crop improvement via plant breeding. The overall objective of the study was to identify metabolic changes associated with improved salt tolerance in finger millet. Understanding tolerance mechanisms plays a pivotal role in the development of elite cultivars. Based on the consensus of several phenotypic data at the germination and seedling stages, we further evaluated two accessions (IE 518 and IE 405) with morphophysiological parameters and metabolomics to dissect the salinity tolerance mechanisms in finger millet. Significant phenotypic separation of IE 518 and IE 405 for salt tolerance was reflected through differences in several physiological processes such as maximum quantum yield of photosystem II (FV/FM), net photosynthesis rate (Pn), shoot Na+ ion accumulation, and oxidative stresses (electrolyte leakage and malondialdehyde content). However, both accessions showed retention of K+ ions, which underscores the role of ion homeostasis in finger millet. Pathway enrichment analysis with the uniquely salt regulated metabolites identified key metabolic pathways such as stress signaling, biotin metabolism, energy metabolism, amino acid biosynthesis, and sugar metabolism in IE 518. An enhanced accumulation of reducing sugars (mannose and melibiose) and amino acids (L-Proline and GABA) in IE 518 under salinity suggests maintaining osmotic balance as a key tolerance mechanism in finger millet.
Collapse
Affiliation(s)
- Saptarshi Mondal
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, USA, 30223
| | - David Jespersen
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, USA, 30223; Department of Crop and Soil Sciences, University of Georgia, Griffin, USA, 30223.
| |
Collapse
|
4
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
5
|
Tamanna N, Mojumder A, Azim T, Iqbal MI, Alam MNU, Rahman A, Seraj ZI. Comparative metabolite profiling of salt sensitive Oryza sativa and the halophytic wild rice Oryza coarctata under salt stress. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10155. [PMID: 38882243 PMCID: PMC11179383 DOI: 10.1002/pei3.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
To better understand the salt tolerance of the wild rice, Oryza coarctata, root tissue-specific untargeted comparative metabolomic profiling was performed against the salt-sensitive Oryza sativa. Under control, O. coarctata exhibited abundant levels of most metabolites, while salt caused their downregulation in contrast to metabolites in O. sativa. Under control conditions, itaconate, vanillic acid, threonic acid, eicosanoids, and a group of xanthin compounds were comparatively abundant in O. coarctata. Similarly, eight amino acids showed constitutive abundance in O. coarctata. In contrast, under control, glycerolipid abundances were lower in O. coarctata and salt stress further reduced their abundance. Most phospholipids also showed a distribution similar to the glycerolipids. Fatty acyls were however significantly induced in O. coarctata but organic acids were prominently induced in O. sativa. Changes in metabolite levels suggest that there was upregulation of the arachidonic acid metabolism in O. coarctata. In addition, the phenylpropanoid biosynthesis as well as cutin, suberin, and wax biosynthesis were also more enriched in O. coarctata, likely contributing to its anatomical traits responsible for salt tolerance. The comparative variation in the number of metabolites like gelsemine, allantoin, benzyl alcohol, specific phospholipids, and glycerolipids may play a role in maintaining the superior growth of O. coarctata in salt. Collectively, our results offer a comprehensive analysis of the metabolite profile in the roots of salt-tolerant O. coarctata and salt-sensitive O. sativa, which confirm potential targets for metabolic engineering to improve salt tolerance and resilience in commercial rice genotypes.
Collapse
Affiliation(s)
- Nishat Tamanna
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
| | - Anik Mojumder
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Department of Genetic Engineering and BiotechnologyUniversity of DhakaDhakaBangladesh
| | - Tomalika Azim
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
| | - Md Ishmam Iqbal
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Department of Biochemistry and MicrobiologyNorth South UniversityDhakaBangladesh
| | - Md Nafis Ul Alam
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Arizona Genomics Institute, School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| | - Abidur Rahman
- Department of Plant Biosciences, Faculty of AgricultureIwate UniversityMoriokaJapan
- Department of Plant Sciences, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Zeba I. Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
| |
Collapse
|
6
|
Huang Z, Chen S, He K, Yu T, Fu J, Gao S, Li H. Exploring salt tolerance mechanisms using machine learning for transcriptomic insights: case study in Spartina alterniflora. HORTICULTURE RESEARCH 2024; 11:uhae082. [PMID: 38766535 PMCID: PMC11101319 DOI: 10.1093/hr/uhae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Salt stress poses a significant threat to global cereal crop production, emphasizing the need for a comprehensive understanding of salt tolerance mechanisms. Accurate functional annotations of differentially expressed genes are crucial for gaining insights into the salt tolerance mechanism. The challenge of predicting gene functions in under-studied species, especially when excluding infrequent GO terms, persists. Therefore, we proposed the use of NetGO 3.0, a machine learning-based annotation method that does not rely on homology information between species, to predict the functions of differentially expressed genes under salt stress. Spartina alterniflora, a halophyte with salt glands, exhibits remarkable salt tolerance, making it an excellent candidate for in-depth transcriptomic analysis. However, current research on the S. alterniflora transcriptome under salt stress is limited. In this study we used S. alterniflora as an example to investigate its transcriptional responses to various salt concentrations, with a focus on understanding its salt tolerance mechanisms. Transcriptomic analysis revealed substantial changes impacting key pathways, such as gene transcription, ion transport, and ROS metabolism. Notably, we identified a member of the SWEET gene family in S. alterniflora, SA_12G129900.m1, showing convergent selection with the rice ortholog SWEET15. Additionally, our genome-wide analyses explored alternative splicing responses to salt stress, providing insights into the parallel functions of alternative splicing and transcriptional regulation in enhancing salt tolerance in S. alterniflora. Surprisingly, there was minimal overlap between differentially expressed and differentially spliced genes following salt exposure. This innovative approach, combining transcriptomic analysis with machine learning-based annotation, avoids the reliance on homology information and facilitates the discovery of unknown gene functions, and is applicable across all sequenced species.
Collapse
Affiliation(s)
- Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Kunhui He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| |
Collapse
|
7
|
Yu J, Yin K, Liu Y, Li Y, Zhang J, Han X, Tong Z. Co-expression network analysis reveals PbTGA4 and PbAPRR2 as core transcription factors of drought response in an important timber species Phoebe bournei. FRONTIERS IN PLANT SCIENCE 2024; 14:1297235. [PMID: 38259934 PMCID: PMC10800493 DOI: 10.3389/fpls.2023.1297235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Phoebe bournei is one of the main afforestation tree species in subtropical regions of China and is famous for its timber. Its distribution and growth are significantly impaired by water conditions. Thus, it is essential to understand the mechanism of the stress response in P. bournei. Here, we analyzed the phenotypic changes and transcriptomic rearrangement in the leaves and roots of P. bournei seedlings grown for 0 h, 1 h, 24 h, and 72 h under simulated drought conditions (10% PEG 6000). The results showed that drought stress inhibited plant photosynthesis and increased oxidoreductase activity and abscisic acid (ABA) accumulation. Spatio-temporal transcriptomic analysis identified 2836 and 3704 differentially expressed genes (DEGs) in leaves and roots, respectively. The responsive genes in different organs presented various expression profiles at different times. Gene co-expression network analysis identified two core transcription factors, TGA4 and APRR2, from two modules that showed a strong positive correlation with ABA accumulation. Our study investigated the different responses of aboveground and belowground organs of P. bournei to drought stress and provides critical information for improving the drought resistance of this timber species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Kim KR, Yu JN, Hong JM, Kim SY, Park SY. Genome Assembly and Microsatellite Marker Development Using Illumina and PacBio Sequencing in the Carex pumila (Cyperaceae) from Korea. Genes (Basel) 2023; 14:2063. [PMID: 38003006 PMCID: PMC10671310 DOI: 10.3390/genes14112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study is the first to report the characterization of Carex pumila genomic information. Assembly of the genome generated a draft of C. pumila based on PacBio Sequel II and Illumina paired-end sequencing, which was assembled from 2941 contigs with an estimated genome size of 0.346 Gb. The estimate of repeats in the genome was 31.0%, and heterozygosity ranged from 0.426 to 0.441%. The integrity evaluation of the assembly revealed 1481 complete benchmarked universal single-copy orthologs (BUSCO) (91.76%), indicating the high quality of the draft assembly. A total of 23,402 protein-coding genes were successfully predicted and annotated in the protein database. UpsetR plots showed that 7481 orthogroups were shared by all species. The phylogenetic tree showed that C. pumila is a close but distant relative of Ananas comosus. C. pumila had greater contraction (3154) than expansion (392). Among the extended gene families, aquaporins have been found to be enriched. Primers for microsatellite markers determined 30 polymorphic markers out of 100. The average number of alleles amplified by these 30 polymorphic markers was 4 to 12, with an average polymorphism information content (PIC) value of 0.660. In conclusion, our study provides a useful resource for comparative genomics, phylogeny, and future population studies of C. pumila.
Collapse
Affiliation(s)
| | | | | | | | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (J.-N.Y.); (J.M.H.); (S.-Y.K.)
| |
Collapse
|
9
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:2159-2173. [PMID: 37051679 DOI: 10.1111/pce.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
To better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P. nuttalliana while decreasing PnuTIP1;1. The PnuPIP2;2 transcripts increased by about six-fold in P. nuttalliana, two-fold in Poa juncifolia, and did not change in Poa pratensis. The NaCl treatment enhanced the rate of water transport in yeast expressing PnuPIP2;2 by 56% compared with control. PnuPIP2,2 expression also resulted in a higher Na+ uptake in yeast cells compared with an empty vector suggesting that PnuPIP2;2 may have both water and ion transporting functions. Structural analysis revealed that the transport properties of PnuPIP2;2 could be affected by its unique pore characteristics, which include a combination of hourglass, cylindrical, and increasing diameter conical entrance shape with pore hydropathy of -0.22.
Collapse
Affiliation(s)
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Du X, Zhou L, Zhu B, Gu L, Yin H, Wang H. The TabHLH35-TaWAK20-TaSPL5 pathway positively regulates Cd stress in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:153. [PMID: 37310523 DOI: 10.1007/s00122-023-04400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Cadmium-induced TaWAK20 regulates the cadmium stress response by phosphorylating TaSPL5 in wheat. Receptor-like kinases (RLKs) are thought to play important roles in responses to abiotic stresses in plants. In this study, we identified a cadmium (Cd)-induced RLK in wheat, TaWAK20, which is a positive regulator of the Cd stress response. TaWAK20 is specifically expressed in root tissue. Overexpression of TaWAK20 significantly improved the tolerance of Cd stress in wheat and decreased Cd accumulation in wheat plants by regulating reactive oxygen species production and scavenging. Yeast one-hybrid assays, electrophoretic mobility shift assays, and firefly luciferase activity analyses demonstrated that the TaWAK20 promoter was bound by the TabHLH35 transcription factor. TaWAK20 interacted with and phosphorylated squamosa promoter binding protein-like 5 (TaSPL5). Furthermore, phosphorylation of TaSPL5 increased its DNA-binding activity. In addition, Arabidopsis-expressing phosphorylated TaSPL5 exhibited greater Cd tolerance than Arabidopsis-expressing unphosphorylated TaSPL5. Taken together, these data identify a TabHLH35-TaWAK20-TaSPL5 module that regulates Cd stress.
Collapse
Affiliation(s)
- Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lizhou Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| | - Huayan Yin
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong Province, China.
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| |
Collapse
|
11
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
12
|
Hu Y, Li M, Hu Y, Han D, Wei J, Zhang T, Guo J, Shi L. Wild soybean salt tolerance metabolic model: Assessment of storage protein mobilization in cotyledons and C/N balance in the hypocotyl/root axis. PHYSIOLOGIA PLANTARUM 2023; 175:e13863. [PMID: 36688582 DOI: 10.1111/ppl.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Yunan Hu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Yongjun Hu
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Defu Han
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Jian Wei
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Tao Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
13
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
14
|
Salinity Tolerance of Halophytic Grass Puccinellia nuttalliana Is Associated with Enhancement of Aquaporin-Mediated Water Transport by Sodium. Int J Mol Sci 2022; 23:ijms23105732. [PMID: 35628537 PMCID: PMC9145133 DOI: 10.3390/ijms23105732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
In salt-sensitive plants, root hydraulic conductivity is severely inhibited by NaCl, rapidly leading to the loss of water balance. However, halophytic plants appear to effectively control plant water flow under salinity conditions. In this study, we tested the hypothesis that Na+ is the principal salt factor responsible for the enhancement of aquaporin-mediated water transport in the roots of halophytic grasses, and this enhancement plays a significant role in the maintenance of water balance, gas exchange, and the growth of halophytic plants exposed to salinity. We examined the effects of treatments with 150 mM of NaCl, KCl, and Na2SO4 to separate the factors that affect water relations and, consequently, physiological and growth responses in three related grass species varying in salt tolerance. The grasses included relatively salt-sensitive Poa pratensis, moderately salt-tolerant Poa juncifolia, and the salt-loving halophytic grass Puccinellia nuttalliana. Our study demonstrated that sustained growth, chlorophyll concentrations, gas exchange, and water transport in Puccinellia nuttalliana were associated with the presence of Na in the applied salt treatments. Contrary to the other examined grasses, the root cell hydraulic conductivity in Puccinellia nuttalliana was enhanced by the 150 mM NaCl and 150 mM Na2SO4 treatments. This enhancement was abolished by the 50 µM HgCl2 treatment, demonstrating that Na was the factor responsible for the increase in mercury-sensitive, aquaporin-mediated water transport. The observed increases in root Ca and K concentrations likely played a role in the transcriptional and (or) posttranslational regulation of aquaporins that enhanced root water transport capacity in Puccinellia nuttalliana. The study demonstrates that Na plays a key role in the aquaporin-mediated root water transport of the halophytic grass Puccinellia nuttalliana, contributing to its salinity tolerance.
Collapse
|