1
|
Balios VA, Fischer K, Bawin T, Krause K. One organ to infect them all: the Cuscuta haustorium. ANNALS OF BOTANY 2025; 135:823-840. [PMID: 39673400 PMCID: PMC12064427 DOI: 10.1093/aob/mcae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Research on the parasitic plant genus Cuscuta has flourished since the genomes of several of its species were published. Most of the research revolves around the iconic infection organ that secures the parasite's sustenance: the haustorium. Interest in understanding the structure-function-regulation relationship of the haustorium is based as much on the wish to find ways to keep the parasite under control as on the opportunities it offers to shed light on various open questions in plant biology. SCOPE This review will briefly introduce parasitism among plants, using the genus Cuscuta as the main example, before presenting its haustorium alongside the terminology that is used to describe its architecture. Possible evolutionary origins of this parasitic organ are presented. The haustorium is then followed from its initiation to maturity with regard to the molecular landscape that accompanies the morphological changes and in light of the challenges it must overcome before gaining access to the vascular cells of its hosts. The fact that Cuscuta has an unusually broad host range stresses how efficient its infection strategy is. Therefore, particular consideration will be given in the final section to a comparison with the process of grafting, being the only other type of tissue connection that involves interspecific vascular continuity. CONCLUSIONS Studies on Cuscuta haustoriogenesis have revealed many molecular details that explain its success. They have also unearthed some mysteries that wait to be solved. With a better understanding of the complexity of the infection with its combination of universal as well as host-specific elements that allow Cuscuta to parasitize on a wide range of host plant species, we may be many steps closer to not only containing the parasite better but also exploiting its tricks where they can serve us in the quest of producing more and better food and fodder.
Collapse
Affiliation(s)
- Vasili A Balios
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Park J, Morinaga K, Houki Y, Tsushima A, Aoki K. Involvement of MID1-COMPLEMENTING ACTIVITY 1 encoding a mechanosensitive ion channel in prehaustorium development of the stem parasitic plant Cuscuta campestris. PLANT & CELL PHYSIOLOGY 2025; 66:400-410. [PMID: 39821429 PMCID: PMC11957263 DOI: 10.1093/pcp/pcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
Parasitic plants pose a substantial threat to agriculture as they attack economically important crops. The stem parasitic plant Cuscuta campestris invades the host's stem with a specialized organ referred to as the haustorium, which absorbs nutrients and water from the host. Initiation of the parasitic process in C. campestris requires mechanical stimuli to its stem. However, the mechanisms by which C. campestris perceives mechanical stimuli are largely unknown. Previous studies have shown that mechanosensitive ion channels (MSCs) are involved in the perception of mechanical stimuli. To examine if MSCs are involved in prehaustorium development upon tactile stimuli, we treated C. campestris plants with an MSC inhibitor, GsMTx-4, which resulted in a reduced density of prehaustoria. To identify the specific MSC gene involved in prehaustorium development, we analyzed the known functions and expression patterns of Arabidopsis MSC genes and selected MID1-COMPLEMENTING ACTIVITY 1 (MCA1) as a primary candidate. The MSC activity of CcMCA1 was confirmed by its ability to complement the phenotype of a yeast mid1 mutant. To evaluate the effect of CcMCA1 silencing on prehaustorium development, we performed host-induced gene silencing using Nicotiana tabacum plants that express an artificial microRNA-targeting CcMCA1. In the CcMCA1-silenced C. campestris, the number of prehaustoria per millimeter of stem length decreased, and the interval length between prehaustoria increased. Additionally, the expression levels of known genes involved in prehaustorium development, such as CcLBD25, decreased significantly in the CcMCA1-silenced plants. The results suggest that CcMCA1 is involved in prehaustorium development in C. campestris.
Collapse
Affiliation(s)
- Jihwan Park
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Kyo Morinaga
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Yuma Houki
- College of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Ayako Tsushima
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Koh Aoki
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
3
|
Zainali N, Alizadeh H, Delavault P. Gene silencing in broomrapes and other parasitic plants of the Orobanchaceae family: mechanisms, considerations, and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:243-261. [PMID: 39289888 DOI: 10.1093/jxb/erae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Holoparasites of the Orobanchaceae family are devastating pests causing severe damage to many crop species, and are nearly impossible to control with conventional methods. During the past few decades, RNAi has been seen as a promising approach to control various crop pests. The exchange of small RNAs (sRNAs) between crops and parasitic plants has been documented, indicating potential for the development of methods to protect them via the delivery of the sRNAs to parasites, a method called host-induced gene silencing (HIGS). Here we describe various approaches used for gene silencing in plants and suggest solutions to improve the long-distance movement of the silencing triggers to increase the efficiency of HIGS in parasitic plants. We also investigate the important biological processes during the life cycle of the parasites, with a focus on broomrape species, providing several appropriate target genes that can be used, in particular, in multiplex gene silencing experiments. We also touch on how the application of nanoparticles can improve the stability and delivery of the silencing triggers, highlighting its potential for control of parasitic plants. Finally, suggestions for further research and possible directions for RNAi in parasitic plants are provided.
Collapse
Affiliation(s)
- Nariman Zainali
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Philippe Delavault
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| |
Collapse
|
4
|
Thomas HR, Gevorgyan A, Hermanson A, Yanders S, Erndwein L, Norman-Ariztía M, Sparks EE, Frank MH. Graft incompatibility between pepper and tomato elicits an immune response and triggers localized cell death. HORTICULTURE RESEARCH 2024; 11:uhae255. [PMID: 39664688 PMCID: PMC11630344 DOI: 10.1093/hr/uhae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/02/2024] [Indexed: 12/13/2024]
Abstract
Graft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown. We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using viability stains. Transcriptomic analysis of the junction was performed using RNA sequencing, and molecular signatures for incompatible graft response were characterized based on meta-transcriptomic comparisons with other biotic processes. We show that tomato is broadly incompatible with diverse pepper cultivars. These incompatible graft partners activate prolonged transcriptional changes that are highly enriched for defense processes. Amongst these processes was broad nucleotide-binding and leucine-rich repeat receptors (NLR) upregulation and genetic signatures indicative of an immune response. Using transcriptomic datasets for a variety of biotic stress treatments, we identified a significant overlap in the genetic profile of incompatible grafting and plant parasitism. In addition, we found over 1000 genes that are uniquely upregulated in incompatible grafts. Based on NLR overactivity, DNA damage, and prolonged cell death, we hypothesize that tomato and pepper graft incompatibility is characterized by an immune response that triggers cell death which interferes with junction formation.
Collapse
Affiliation(s)
- Hannah Rae Thomas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR2 2DT, UK
| | - Alice Gevorgyan
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Hermanson
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Samantha Yanders
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19713, USA
- Genetic Improvement for Fruits and Vegetables Laboratory, USDA-ARS, Chatsworth, NJ 08019, USA
| | | | - Erin E Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19713, USA
| | - Margaret H Frank
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Gerakari M, Kotsira V, Kapazoglou A, Tastsoglou S, Katsileros A, Chachalis D, Hatzigeorgiou AG, Tani E. Transcriptomic Approach for Investigation of Solanum spp. Resistance upon Early-Stage Broomrape Parasitism. Curr Issues Mol Biol 2024; 46:9047-9073. [PMID: 39194752 DOI: 10.3390/cimb46080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Tomato (Solanum lycopersicum) is a major horticultural crop of high economic importance. Phelipanche and Orobanche genera (broomrapes) are parasitic weeds, constituting biotic stressors that impact tomato production. Developing varieties with tolerance to broomrapes has become imperative for sustainable agriculture. Solanum pennellii, a wild relative of cultivated tomato, has been utilized as breeding material for S. lycopersicum. In the present study, it is the first time that an in-depth analysis has been conducted for these two specific introgression lines (ILs), IL6-2 and IL6-3 (S. lycopersicum X S. pennellii), which were employed to identify genes and metabolic pathways associated with resistance against broomrape. Comparative transcriptomic analysis revealed a multitude of differentially expressed genes (DEGs) in roots, especially in the resistant genotype IL6-3, several of which were validated by quantitative PCR. DEG and pathway enrichment analysis (PEA) revealed diverse molecular mechanisms that can potentially be implicated in the host's defense response and the establishment of resistance. The identified DEGs were mostly up-regulated in response to broomrape parasitism and play crucial roles in various processes different from strigolactone regulation. Our findings indicate that, in addition to the essential role of strigolactone metabolism, multiple cellular processes may be involved in the tomato's response to broomrapes. The insights gained from this study will enhance our understanding and facilitate molecular breeding methods regarding broomrape parasitism. Moreover, they will assist in developing sustainable strategies and providing alternative solutions for weed management in tomatoes and other agronomically important crops.
Collapse
Affiliation(s)
- Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece
| | - Vasiliki Kotsira
- Hellenic Pasteur Institute, 11521 Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Aliki Kapazoglou
- Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Spyros Tastsoglou
- Hellenic Pasteur Institute, 11521 Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Anastasios Katsileros
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece
| | - Demosthenis Chachalis
- Laboratory of Weed Science, Benaki Phytopathological Institute, 14561 Kifisia, Greece
| | - Artemis G Hatzigeorgiou
- Hellenic Pasteur Institute, 11521 Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
6
|
Nien YC, Vanek A, Axtell MJ. Trans-Species Mobility of RNA Interference between Plants and Associated Organisms. PLANT & CELL PHYSIOLOGY 2024; 65:694-703. [PMID: 38288670 DOI: 10.1093/pcp/pcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 05/31/2024]
Abstract
Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.
Collapse
Affiliation(s)
- Ya-Chi Nien
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Vanek
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Edema H, Bawin T, Olsen S, Krause K, Karppinen K. Parasitic dodder expresses an arsenal of secreted cellulases with multi-substrate specificity during host invasion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108633. [PMID: 38663263 DOI: 10.1016/j.plaphy.2024.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Cuscuta campestris is a common and problematic parasitic plant which relies on haustoria to connect to and siphon nutrients from host plants. Glycoside hydrolase family 9 (GH9) cellulases (EC 3.2.1.4) play critical roles in plant cell wall biosynthesis and disassembly, but their roles during Cuscuta host invasion remains underexplored. In this study, we identified 22 full-length GH9 cellulase genes in C. campestris genome, which encoded fifteen secreted and seven membrane-anchored cellulases that showed distinct phylogenetic relationships. Expression profiles suggested that some of the genes are involved in biosynthesis and remodeling of the parasite's cell wall during haustoriogenesis, while other genes encoding secreted B- and C-type cellulases are tentatively associated with degrading host cell walls during invasion. Transcriptomic data in a host-free system and in the presence of susceptible or partially resistant tomato hosts, showed for especially GH9B7, GH9B11 and GH9B12 a shift in expression profiles in the presence of hosts, being more highly expressed during host attachment, indicating that Cuscuta can tune cellulase expression in response to a host. Functional analyses of recombinant B- and C-type cellulases showed endoglucanase activities over wide pH and temperature conditions, and activities towards multiple cellulose and hemicellulose substrates. These findings improve our understanding of host cell wall disassembly by Cuscuta, and cellulase activity towards broad substrate range potentially explain its wide host range. This is the first study to provide a broad biochemical insight into Cuscuta GH9 cellulases, which based on our study may have potential applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Hilary Edema
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| |
Collapse
|
8
|
Bawin T, Didriksen A, Faehn C, Olsen S, Sørensen I, Rose JKC, Krause K. Cuscuta campestris fine-tunes gene expression during haustoriogenesis as an adaptation to different hosts. PLANT PHYSIOLOGY 2023; 194:258-273. [PMID: 37706590 PMCID: PMC10756757 DOI: 10.1093/plphys/kiad505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-β-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Corine Faehn
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| |
Collapse
|
9
|
Leso M, Kokla A, Feng M, Melnyk CW. Pectin modifications promote haustoria development in the parasitic plant Phtheirospermum japonicum. PLANT PHYSIOLOGY 2023; 194:229-242. [PMID: 37311199 PMCID: PMC10762509 DOI: 10.1093/plphys/kiad343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Parasitic plants are globally prevalent pathogens with important ecological functions but also potentially devastating agricultural consequences. Common to all parasites is the formation of the haustorium which requires parasite organ development and tissue invasion into the host. Both processes involve cell wall modifications. Here, we investigated a role for pectins during haustorium development in the facultative parasitic plant Phtheirospermum japonicum. Using transcriptomics data from infected Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), we identified genes for multiple P. japonicum pectin methylesterases (PMEs) and their inhibitors (PMEIs) whose expression was upregulated by haustoria formation. Changes in PME and PMEI expression were associated with tissue-specific modifications in pectin methylesterification. While de-methylesterified pectins were present in outer haustorial cells, highly methylesterified pectins were present in inner vascular tissues, including the xylem bridge that connects parasite to host. Specifically blocking xylem bridge formation in the haustoria inhibited several PME and PMEI genes from activating. Similarly, inhibiting PME activity using chemicals or by overexpressing PMEI genes delayed haustoria development. Our results suggest a dynamic and tissue-specific regulation of pectin contributes to haustoria initiation and to the establishment of xylem connections between parasite and host.
Collapse
Affiliation(s)
- Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| |
Collapse
|
10
|
Casadesús A, Munné-Bosch S. Parasitic plant-host interaction between the holoparasite Cytinus hypocistis and the shrub Cistus albidus in their natural Mediterranean habitat: local and systemic hormonal effects. TREE PHYSIOLOGY 2023; 43:2001-2011. [PMID: 37606243 DOI: 10.1093/treephys/tpad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Mediterranean-type ecosystems provide a unique opportunity to study parasitic plant-host interactions, such as the relationship between the dominant shrub Cistus albidus L. and the root holoparasitic plant Cytinus hypocistis L. We examined this interaction (i) locally, by measuring the hormonal profiling of the interaction zone between the holoparasitic plant and the host, and (ii) systemically, by examining the hormonal profiling and physiological status of leaves from infested and uninfested plants. Furthermore, we explored how temporal variation (seasonal effects) and geographical location influenced the systemic hormonal and physiological response of leaves. Results shed light on tissue-related variations in hormones, suggesting the parasite exerted a sink effect, mainly influenced by cytokinins. Jasmonates triggered a defense response in leaves, far from the infestation point, and both jasmonates and abscisic acid (ABA) appeared to be involved in the tolerance to holoparasitism when plants were simultaneously challenged with summer drought. Parasitism did not have any major negative impact on the host, as indicated by physiological stress markers in leaves, thus indicating a high tolerance of the shrub C. albidus to the root holoparasitic plant C. hypocistis. Rather, parasitism seemed to exert a priming-like effect and some compensatory effects were observed (increased chlorophyll contents) in the host under mild climatic conditions. We conclude that (i) cytokinins, jasmonates and ABA play a role at the local and systemic levels in the response of C. albidus to the biotic stress caused by C. hypocistis, and that (ii) seasonal changes in environmental conditions and geographical location may impact holoparasitic plant-host interactions in the field, modulating the physiological response.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Avinguda Diagonal 643, 08028 Barcelona, Spain
- Institute of Research of Biodiversity (IRBio), University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Avinguda Diagonal 643, 08028 Barcelona, Spain
- Institute of Research of Biodiversity (IRBio), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Jhu MY, Ellison EE, Sinha NR. CRISPR gene editing to improve crop resistance to parasitic plants. Front Genome Ed 2023; 5:1289416. [PMID: 37965302 PMCID: PMC10642197 DOI: 10.3389/fgeed.2023.1289416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Evan E. Ellison
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int J Mol Sci 2023; 24:ijms24032647. [PMID: 36768970 PMCID: PMC9917227 DOI: 10.3390/ijms24032647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic plants extract nutrients from the other plants to finish their life cycle and reproduce. The control of parasitic weeds is notoriously difficult due to their tight physical association and their close biological relationship to their hosts. Parasitic plants differ in their susceptible host ranges, and the host species differ in their susceptibility to parasitic plants. Current data show that adaptations of parasitic plants to various hosts are largely genetically determined. However, multiple cases of rapid adaptation in genetically homogenous parasitic weed populations to new hosts strongly suggest the involvement of epigenetic mechanisms. Recent progress in genome-wide analyses of gene expression and epigenetic features revealed many new molecular details of the parasitic plants' interactions with their host plants. The experimental data obtained in the last several years show that multiple common features have independently evolved in different lines of the parasitic plants. In this review we discuss the most interesting new details in the interaction between parasitic and host plants.
Collapse
|
13
|
Aguilar-Venegas M, Quintana-Rodríguez E, Aguilar-Hernández V, López-García CM, Conejo-Dávila E, Brito-Argáez L, Loyola-Vargas VM, Vega-Arreguín J, Orona-Tamayo D. Protein Profiling of Psittacanthus calyculatus during Mesquite Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:464. [PMID: 36771550 PMCID: PMC9920738 DOI: 10.3390/plants12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Psittacanthus calyculatus is a hemiparasite mistletoe that represents an ecological problem due to the impacts caused to various tree species of ecological and commercial interest. Although the life cycle for the Psittacanthus genus is well established in the literature, the development stages and molecular mechanism implicated in P. calyculatus host infection are poorly understood. In this study, we used a manageable infestation of P. laevigata with P. calyculatus to clearly trace the infection, which allowed us to describe five phenological infective stages of mistletoe on host tree branches: mature seed (T1), holdfast formation (T2), haustorium activation (T3), haustorium penetration (T4), and haustorium connection (T5) with the host tree. Proteomic analyses revealed proteins with a different accumulation and cellular processes in infective stages. Activities of the cell wall-degrading enzymes cellulase and β-1,4-glucosidase were primarily active in haustorium development (T3), while xylanase, endo-glucanase, and peptidase were highly active in the haustorium penetration (T4) and xylem connection (T5). Patterns of auxins and cytokinin showed spatial concentrations in infective stages and moreover were involved in haustorium development. These results are the first evidence of proteins, cell wall-degrading enzymes, and phytohormones that are involved in early infection for the Psittacanthus genus, and thus represent a general infection mechanism for other mistletoe species. These results could help to understand the molecular dialogue in the establishment of P. calyculatus parasitism.
Collapse
Affiliation(s)
- Montserrat Aguilar-Venegas
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | | - Víctor Aguilar-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | | | - Efraín Conejo-Dávila
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria CP 36275, Guanajuato, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Julio Vega-Arreguín
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | |
Collapse
|
14
|
Jhu MY, Sinha NR. Cuscuta species: Model organisms for haustorium development in stem holoparasitic plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1086384. [PMID: 36578337 PMCID: PMC9792094 DOI: 10.3389/fpls.2022.1086384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Parasitic plants are notorious for causing serious agricultural losses in many countries. Specialized intrusive organs, haustoria, confer on parasitic plants the ability to acquire water and nutrients from their host plants. Investigating the mechanism involved in haustorium development not only reveals the fascinating mystery of how autotrophic plants evolved parasitism but also provides the foundation for developing more effective methods to control the agricultural damage caused by parasitic plants. Cuscuta species, also known as dodders, are one of the most well-known and widely spread stem holoparasitic plants. Although progress has been made recently in understanding the evolution and development of haustoria in root parasitic plants, more and more studies indicate that the behaviors between root and stem haustorium formation are distinct, and the mechanisms involved in the formation of these organs remain largely unknown. Unlike most endoparasites and root holoparasitic plants, which have high host-specificity and self- or kin-recognition to avoid forming haustoria on themselves or closely related species, auto-parasitism and hyper-parasitism are commonly observed among Cuscuta species. In this review, we summarize the current understanding of haustorium development in dodders and the unique characteristics of their parasitizing behaviors. We also outline the advantages of using Cuscuta species as model organisms for haustorium development in stem holoparasitic plants, the current unknown mysteries and limitations in the Cuscuta system, and potential future research directions to overcome these challenges.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, CA, United States
| |
Collapse
|
15
|
Ibarra-Laclette E, Venancio-Rodríguez CA, Vásquez-Aguilar AA, Alonso-Sánchez AG, Pérez-Torres CA, Villafán E, Ramírez-Barahona S, Galicia S, Sosa V, Rebollar EA, Lara C, González-Rodríguez A, Díaz-Fleisher F, Ornelas JF. Transcriptional Basis for Haustorium Formation and Host Establishment in Hemiparasitic Psittacanthus schiedeanus Mistletoes. Front Genet 2022; 13:929490. [PMID: 35769994 PMCID: PMC9235361 DOI: 10.3389/fgene.2022.929490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The mistletoe Psittacanthus schiedeanus, a keystone species in interaction networks between plants, pollinators, and seed dispersers, infects a wide range of native and non-native tree species of commercial interest. Here, using RNA-seq methodology we assembled the whole circularized quadripartite structure of P. schiedeanus chloroplast genome and described changes in the gene expression of the nuclear genomes across time of experimentally inoculated seeds. Of the 140,467 assembled and annotated uniGenes, 2,000 were identified as differentially expressed (DEGs) and were classified in six distinct clusters according to their expression profiles. DEGs were also classified in enriched functional categories related to synthesis, signaling, homoeostasis, and response to auxin and jasmonic acid. Since many orthologs are involved in lateral or adventitious root formation in other plant species, we propose that in P. schiedeanus (and perhaps in other rootless mistletoe species), these genes participate in haustorium formation by complex regulatory networks here described. Lastly, and according to the structural similarities of P. schiedeanus enzymes with those that are involved in host cell wall degradation in fungi, we suggest that a similar enzymatic arsenal is secreted extracellularly and used by mistletoes species to easily parasitize and break through tissues of the host.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | | | | | | | - Claudia-Anahí Pérez-Torres
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigador por Mexico-CONACyT en el Instituto de Ecología A.C. (INECOL), Xalapa, Mexico
| | - Emanuel Villafán
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico
| | - Sonia Galicia
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Victoria Sosa
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Antonio González-Rodríguez
- Laboratorio de Genética de la Conservación, Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Morelia, Mexico
| | | | | |
Collapse
|
16
|
Yokoyama R, Yokoyama T, Kuroha T, Park J, Aoki K, Nishitani K. Regulatory Modules Involved in the Degradation and Modification of Host Cell Walls During Cuscuta campestris Invasion. FRONTIERS IN PLANT SCIENCE 2022; 13:904313. [PMID: 35873971 PMCID: PMC9298654 DOI: 10.3389/fpls.2022.904313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 05/13/2023]
Abstract
Haustoria of parasitic plants have evolved sophisticated traits to successfully infect host plants. The degradation and modification of host cell walls enable the haustorium to effectively invade host tissues. This study focused on two APETALA2/ETHYLENE RESPONSE FACTOR (ERF) genes and a set of the cell wall enzyme genes principally expressed during the haustorial invasion of Cuscuta campestris Yuncker. The orthogroups of the TF and cell wall enzyme genes have been implicated in the cell wall degradation and modification activities in the abscission of tomatoes, which are currently the phylogenetically closest non-parasitic model species of Cuscuta species. Although haustoria are generally thought to originate from root tissues, our results suggest that haustoria have further optimized invasion potential by recruiting regulatory modules from other biological processes.
Collapse
Affiliation(s)
- Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Ryusuke Yokoyama,
| | | | - Takeshi Kuroha
- Division of Crop Genome Editing Research, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jihwan Park
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | | |
Collapse
|