1
|
Liu S, Ding X, Liu K, Chen N. Harmonized coexistence of intragenomic variations in diatom Skeletonema strains. ENVIRONMENTAL RESEARCH 2024; 262:119799. [PMID: 39147184 DOI: 10.1016/j.envres.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Metabarcoding analysis has been demonstrated to be an effective technology for monitoring diversity and dynamics of phytoplankton including Skeletonema species. Although molecular diversity uncovered in metabarcoding projects has generally been interpreted as sum of interspecies diversity and intraspecies diversity, accumulating evidence suggests that it also harbors unprecedentedly high levels of intra-genomic variations (IGVs). As up to thousands of amplicon sequence variants (ASVs) identified in a typical metabarcoding project can be annotated to be Skeletonema species, we hypothesize that substantial portions of these ASVs are contributed by IGVs. Here, the nature of IGVs in Skeletonema species was quantitatively analyzed by carrying out single-strain metabarcoding analysis of 18S rDNA V4 in 49 strains belonging to seven Skeletonema species. Results showed that each Skeletonema strain harbored a high level of IGVs as expected. While many Skeletonema strains each contained one dominant ASV and a substantial number of ASVs displaying much lower relative abundance, other Skeletonema strains each contained multiple ASVs with comparable or nearly equally abundances. Thus the co-existence of multiple dominant ASVs in a single cell indicated a tug-of-war of these variants in evolution, which may eventually result in harmonized coexistence of multiple dominant ASVs. A total of nine dominant ASVs and 652 non-dominant ASVs were found in 49 strains of seven Skeletonema species, indicating rich interspecies and intraspecies variations, and complex evolution of IGVs in genus of Skeletonema. The results confirmed that the extensive degree of IGVs was the main contributor to the high molecular diversity revealed by metabarcoding analysis. This study highlights the importance of quantitative characterization of IGVs in Skeletonema species for accurate interpretation of species diversity in metabarcoding analysis.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiangxiang Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
2
|
Zhang H, Wang N, Zhang D, Wang F, Xu S, Ding X, Xie Y, Tian J, Li B, Cui Z, Jiang T. Composition and temporal dynamics of the phytoplankton community in Laizhou Bay revealed by microscopic observation and rbcL gene sequencing. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106734. [PMID: 39244953 DOI: 10.1016/j.marenvres.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Laizhou Bay, a major breeding ground for economic marine organisms in the northern waters of China, is facing rapid environmental degradation. In this study, field surveys in this area were conducted in the spring, summer, and autumn of 2020. Microscopic observation and RuBisCO large subunit (rbcL) gene analysis were employed to understand the community structure and temporal dynamics of phytoplankton. The phytoplankton community structures detected by the two methods showed significant differences. Microscopic observation revealed the dominance of dinoflagellates in spring that shifted to the dominance of diatoms in summer and autumn. However, rbcL gene sequencing consistently identified diatoms as dominant throughout all three seasons, with their relative abundance showing an increasing trend. Conversely, the relative abundance of the second- and third-most abundant taxa, namely, haptophytes and ochrophytes, decreased as the seasons transitioned. rbcL gene sequencing annotated more species than microscopy. It could detect haptophytes and cryptophytes, which were overlooked by microscopy. In addition, rbcL gene sequencing detected a remarkable amount of Thalassiosira profunda, which was previously unidentified in this sea area. However, it appeared to underestimate the contribution of dinoflagellates considerably, with most taxa being only identified through microscopic identification. The two methods jointly identified 28 harmful algal bloom taxa with similar detection quantities but substantial differences in species composition. Phytoplankton communities were influenced by temperature, salinity, and nutrients. The results of this work suggest that a combination of multiple techniques is necessary for a comprehensive understanding of phytoplankton.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Nan Wang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Shiji Xu
- Yantai Ocean Center, Ministry of Natural Resources, Yantai, 264006, China
| | - Xiaokun Ding
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Yixuan Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jinghuan Tian
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Bin Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Tao Jiang
- School of Oceanography, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Liu S, Chen N. Chromosome-level genome assembly of marine diatom Skeletonema tropicum. Sci Data 2024; 11:403. [PMID: 38643276 PMCID: PMC11032307 DOI: 10.1038/s41597-024-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
4
|
Liu F, Wang Y, Huang H, Chen N. Evolutionary dynamics of plastomes in coscinodiscophycean diatoms revealed by comparative genomics. Front Microbiol 2023; 14:1203780. [PMID: 37396366 PMCID: PMC10307964 DOI: 10.3389/fmicb.2023.1203780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
To understand the evolution of coscinodiscophycean diatoms, plastome sequences of six coscinodiscophycean diatom species were constructed and analyzed in this study, doubling the number of constructed plastome sequences in Coscinodiscophyceae (radial centrics). The platome sizes varied substantially in Coscinodiscophyceae, ranging from 119.1 kb of Actinocyclus subtilis to 135.8 kb of Stephanopyxis turris. Plastomes in Paraliales and Stephanopyxales tended to be larger than those in Rhizosoleniales and Coscinodiacales, which were due to the expansion of the inverted repeats (IRs) and to the marked increase of the large single copy (LSC). Phylogenomic analysis indicated that Paralia and Stephanopyxis clustered tightly to form the Paraliales-Stephanopyxales complex, which was sister to the Rhizosoleniales-Coscinodiscales complex. The divergence time between Paraliales and Stephanopyxales was estimated at 85 MYA in the middle Upper Cretaceous, indicating that Paraliales and Stephanopyxales appeared later than Coscinodiacales and Rhizosoleniales according to their phylogenetic relationships. Frequent losses of housekeeping protein-coding genes (PCGs) were observed in these coscinodiscophycean plastomes, indicating that diatom plastomes showed an ongoing reduction in gene content during evolution. Two acpP genes (acpP1 and acpP2) detected in diatom plastomes were found to be originated from an early gene duplication event occurred in the common progenitor after diatom emergence, rather than multiple independent gene duplications occurring in different lineages of diatoms. The IRs in Stephanopyxis turris and Rhizosolenia fallax-imbricata exhibited a similar trend of large expansion to the small single copy (SSC) and slightly small contraction from the LSC, which eventually led to the conspicuous increase in IR size. Gene order was highly conserved in Coscinodiacales, while multiple rearrangements were observed in Rhizosoleniales and between Paraliales and Stephanopyxales. Our results greatly expanded the phylogenetic breadth in Coscinodiscophyceae and gained novel insights into the evolution of plastomes in diatoms.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yichao Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
5
|
Comparison of Boraginales Plastomes: Insights into Codon Usage Bias, Adaptive Evolution, and Phylogenetic Relationships. DIVERSITY 2022. [DOI: 10.3390/d14121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Boraginales (Boraginaceae a.l.) comprise more than 2450 species worldwide. However, little knowledge exists of the characteristics of the complete plastid genome. In this study, three new sequences representing the first pt genome of Heliotropiaceae and Cordiaceae were assembled and compared with other Boraginales species. The pt genome sizes of Cordia dichotoma, Heliotropium arborescens, and Tournefortia montana were 151,990 bp, 156,243 bp, and 155,891 bp, respectively. Multiple optimal codons were identified, which may provide meaningful information for enhancing the gene expression of Boraginales species. Furthermore, codon usage bias analyses revealed that natural selection and other factors may dominate codon usage patterns in the Boraginales species. The boundaries of the IR/LSC and IR/SSC regions were significantly different, and we also found a signal of obvious IR region expansion in the pt genome of Nonea vesicaria and Arnebia euchroma. Genes with high nucleic acid diversity (pi) values were also calculated, which may be used as potential DNA barcodes to investigate the phylogenetic relationships in Boraginales. psaI, rpl33, rpl36, and rps19 were found to be under positive selection, and these genes play an important role in our understanding of the adaptive evolution of the Boraginales species. Phylogenetic analyses implied that Boraginales can be divided into two groups. The existence of two subfamilies (Lithospermeae and Boragineae) in Boraginaceae is also strongly supported. Our study provides valuable information on pt genome evolution and phylogenetic relationships in the Boraginales species.
Collapse
|
6
|
Comparative Analysis of Chloroplast Genomes within Saxifraga (Saxifragaceae) Takes Insights into Their Genomic Evolution and Adaption to the High-Elevation Environment. Genes (Basel) 2022; 13:genes13091673. [PMID: 36140840 PMCID: PMC9498722 DOI: 10.3390/genes13091673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Saxifraga species are widely distributed in alpine and arctic regions in the Northern hemisphere. Highly morphological diversity within this genus brings great difficulties for species identification, and their typical highland living properties make it interesting how they adapt to the extreme environment. Here, we newly generated the chloroplast (cp) genomes of two Saxifraga species and compared them with another five Saxifraga cp genomes to understand the characteristics of cp genomes and their potential roles in highland adaptation. The genome size, structure, gene content, GC content, and codon usage pattern were found to be highly similar. Cp genomes ranged from 146,549 bp to 151,066 bp in length, most of which comprised 130 predicted genes. Yet, due to the expansion of IR regions, the second copy of rps19 in Saxifraga stolonifera was uniquely kept. Through sequence divergence analysis, we identified seven hypervariable regions and detected some signatures of regularity associated with genetic distance. We also identified 52 to 89 SSRs and some long repeats among seven Saxifraga species. Both ML and BI phylogenetic analyses confirmed that seven Saxifraga species formed a monophyletic clade in the Saxifragaceae family, and their intragenus relationship was also well supported. Additionally, the ndhI and ycf1 genes were considered under positive selection in species inhabiting relatively high altitudes. Given the conditions of intense light and low CO2 concentration in the highland, the products of these two genes might participate in the adaptation to the extreme environment.
Collapse
|
7
|
Wang Y, Wang J, Chen Y, Liu S, Zhao Y, Chen N. Comparative Analysis of Bacillariophyceae Chloroplast Genomes Uncovers Extensive Genome Rearrangements Associated with Speciation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10024. [PMID: 36011659 PMCID: PMC9408514 DOI: 10.3390/ijerph191610024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The Bacillariophyceae is a species-rich, ecologically significant class of Bacillariophyta. Despite their critical importance in marine ecosystems as primary producers and in the development of harmful algal blooms (HABs), taxonomic research on Bacillariophyceae species has been hindered because of their limited morphological features, plasticity of morphologies, and the low resolution of common molecular markers. Hence molecular markers with improved resolution are urgently needed. Organelle genomes, which can be constructed efficiently with the recent development of high throughput DNA sequencing technologies and the advancement of bioinformatics tools, have been proposed as super barcodes for their higher resolution for distinguishing different species and intra-species genomic variations. In this study, we tested the value of full-length chloroplast genomes (cpDNAs) as super barcodes for distinguishing diatom species, by constructing cpDNAs of 11 strains of the class Bacillariophyceae, including Nitzschia ovalis, Nitzschia traheaformis, Cylindrotheca spp., Psammodictyon constrictum, Bacillaria paxillifer, two strains of Haslea tsukamotoi, Haslea avium, Navicula arenaria, and Pleurosigma sp. Comparative analysis of cpDNAs revealed that cpDNAs were not only adequate for resolving different species, but also for enabling recognition of high levels of genome rearrangements between cpDNAs of different species, especially for species of the genera Nitzschia, Cylindrotheca, Navicula and Haslea. Additionally, comparative analysis suggested that the positioning of species in the genus Haslea should be transferred to the genus Navicula. Chloroplast genome-based evolutionary analysis suggested that the Bacillariophyceae species first appeared during the Cretaceous period and the diversity of species rose after the mass extinction about 65 Mya. This study highlighted the value of cpDNAs in research on the biodiversity and evolution of Bacillariophyceae species, and, with the construction of more cpDNAs representing additional genera, deeper insight into the biodiversity and evolutionary relationships of Bacillariophyceae species will be gained.
Collapse
Affiliation(s)
- Yichao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
Wei R, Li Q. The Complete Chloroplast Genome of Endangered Species Stemona parviflora: Insight into the Phylogenetic Relationship and Conservation Implications. Genes (Basel) 2022; 13:genes13081361. [PMID: 36011272 PMCID: PMC9407434 DOI: 10.3390/genes13081361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Stemona parviflora is an endangered species, narrowly endemic to Hainan and Southwest Guangdong. The taxonomic classification of S. parviflora remains controversial. Moreover, studying endangered species is helpful for current management and conservation. In this study, the first complete chloroplast genome of S. parviflora was assembled and compared with other Stemona species. The chloroplast genome size of S. parviflora was 154,552 bp, consisting of 87 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and one pseudogene. The ψycf1 gene was lost in the cp genome of S. sessilifolia, but it was detected in four other species of Stemona. The inverted repeats (IR) regions have a relatively lower length variation compared with the large single copy (LSC) and small single copy (SSC) regions. Long repeat sequences and simple sequence repeat (SSR) were detected, and most SSR were distributed in the LSC region. Codon usage bias analyses revealed that the RSCU value of the genus Stemona has almost no difference. As with most angiosperm chloroplast genomes, protein-coding regions were more conservative than the inter-gene spacer. Seven genes (atpI, ccsA, cemA, matK, ndhA, petA, and rpoC1) were detected under positive selection in different Stemona species, which may result from adaptive evolution to different habitats. Phylogenetic analyses show the Stemona cluster in two main groups; S. parviflora were closest to S. tuberosa. A highly suitable region of S. parviflora was simulated by Maxent in this study; it is worth noting that the whole territory of Taiwan has changed to a low fitness area and below in the 2050 s, which may not be suitable for the introduction and cultivation of S. parviflora. In addition, limited by the dispersal capacity of S. parviflora, it is necessary to carry out artificial grafts to expand the survival areas of S. parviflora. Our results provide valuable information on characteristics of the chloroplast genome, phylogenetic relationships, and potential distribution range of the endangered species S. parviflora.
Collapse
Affiliation(s)
- Ran Wei
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Qiang Li
- Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence:
| |
Collapse
|
9
|
El-Hadary MH, Elsaied HE, Khalil NM, Mikhail SK. Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53403-53419. [PMID: 35287194 PMCID: PMC9343293 DOI: 10.1007/s11356-022-19217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms (HABs) threaten the aquatic ecosystems due to either poisonous effects on living organisms or oxygen-consuming. So HABs' accurate identification, including red tide, is crucial. This study aimed to molecular identification of dominant species during tide period in nine stations along Alexandria region at Egyptian costs during one year. Samples were collected weekly before water discoloration but daily during red tide intensive growth from both 50 cm below the surface and 3 m depth over the bottom from the water surface. The red tide detection was highly from early August to half of September, since its highest peak with a maximum frequency inside the Eastern Harbor. The examined cultures samples isolated during red tide had four dominant species. Peroxidase profile showed an expression pattern of three loci (Px1, Px2, and Px3) in most species. The Px2 was the only heterozygous locus among the three loci in all species. Protein profiling showed that 17 bands out of 65 were specific to the species. The phylogenetic relationships derived from profiles of protein and 18S rRNA gene operon sequences for the four isolated species were mostly similar. We identified the four dominant HABs species as Aplanochytrium sp., Chlamydomonas sp., Cryptophyceae sp., and Psammodictyon sp. based on their 18S rRNA sequences and deposited them at DDBJ/EMBL/GenBank database. Aplanochytrium sp. is recorded as a red tide causative species for the first time in the screened region despite belonging to the defunct fungi.
Collapse
Affiliation(s)
- Mona H El-Hadary
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Al Beheria Governorate, Egypt.
| | - Hosam E Elsaied
- National Institutes of Oceanography and Fisheries (NIOF), Al kanater Elkhiria, Al Qalyubiyah, Egypt
| | - Nehma M Khalil
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Samia K Mikhail
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
10
|
Zhang M, Chen N. Comparative analysis of Thalassionema chloroplast genomes revealed hidden biodiversity. BMC Genomics 2022; 23:327. [PMID: 35477350 PMCID: PMC9044688 DOI: 10.1186/s12864-022-08532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
The cosmopolitan Thalassionema species are often dominant components of the plankton diatom flora and sediment diatom assemblages in all but the Polar regions, making important ecological contribution to primary productivity. Historical studies concentrated on their indicative function for the marine environment based primarily on morphological features and essentially ignored their genomic information, hindering in-depth investigation on Thalassionema biodiversity. In this project, we constructed the complete chloroplast genomes (cpDNAs) of seven Thalassionema strains representing three different species, which were also the first cpDNAs constructed for any species in the order Thalassionematales that includes 35 reported species and varieties. The sizes of these Thalassionema cpDNAs, which showed typical quadripartite structures, varied from 124,127 bp to 140,121 bp. Comparative analysis revealed that Thalassionema cpDNAs possess conserved gene content inter-species and intra-species, along with several gene losses and transfers. Besides, their cpDNAs also have expanded inverted repeat regions (IRs) and preserve large intergenic spacers compared to other diatom cpDNAs. In addition, substantial genome rearrangements were discovered not only among different Thalassionema species but also among strains of a same species T. frauenfeldii, suggesting much higher diversity than previous reports. In addition to confirming the phylogenetic position of Thalassionema species, this study also estimated their emergence time at approximately 38 Mya. The availability of the Thalassionema species cpDNAs not only helps understand the Thalassionema species, but also facilitates phylogenetic analysis of diatoms.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, 10039, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|