1
|
Wahab A, Batool F, Abdi G, Muhammad M, Ullah S, Zaman W. Role of plant growth-promoting rhizobacteria in sustainable agriculture: Addressing environmental and biological challenges. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154455. [PMID: 40037066 DOI: 10.1016/j.jplph.2025.154455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
This review underscores the importance of plant growth-promoting rhizobacteria (PGPR), fostering sustainability to address various environmental and biological issues. PGPR helps crops withstand salinity, nutrient deficiencies, and drought stress while tackling agricultural threats. Sustainable agriculture has emerged as a response to the social and economic problems farming practices face. Plants encounter obstacles from biotic stressors such as bacteria, viruses, nematodes, arachnids, and weeds that impede their growth. Furthermore, PGPR enhances plant growth through improved nutrient absorption and defense against pests. Bacillus subtilis utilizes indirect methods to combat diseases and protect plants from various diseases and pests. Additionally, PGPR acts as a bio-fertilizer that mitigates drought stress effects on crops in various regions worldwide. This review proposes strategies to boost productivity and improve bio-inoculant efficiency under real-world conditions. PGPR demonstrates its role in combating threats by influencing plant defense mechanisms, initiating systemic resistance responses, and regulating gene expression related to pathogen detection and defense signaling pathways. It maintains a balanced root microbiome by suppressing harmful microbial proliferation while promoting beneficial microbial interactions. Despite the challenges posed by technology and ethical considerations surrounding their modification, integrating PGPR into farming methods holds promise for sustainable agriculture. Given the increasing impact of climate change, PGPR plays a crucial role in improving crop resilience, enhancing soil quality, and reducing dependence on synthetic agricultural inputs.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS. Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Farwa Batool
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Kim TL, Lim H, Lee K, Denison MIJ, Natarajan S, Oh C. Comparative phenotypic, physiological, and transcriptomic responses to drought and recovery in two Fraxinus species. BMC PLANT BIOLOGY 2025; 25:348. [PMID: 40098103 PMCID: PMC11916329 DOI: 10.1186/s12870-025-06372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND This study focused on the drought tolerance and resilience of two ash species: Fraxinus chiisanensis and F. rhynchophylla. These two species are distributed in different habitats, suggesting that they have different levels of drought tolerance. Understanding their response to drought stress, particularly during the seedling stage, is crucial for selecting and developing drought-resistant varieties. This study aimed to compare the phenotypic, physiological, and transcriptomic characteristics of drought-stressed and recovered rewatered plants in a time-course experiment. RESULTS In F. rhynchophylla, drought stress resulted in more severe growth retardation, temperature increase, and a faster decline in the fluorescence response, accompanied by a significant rise in stress indices. However, these reactions recovered quickly after rehydration. In contrast, F. chiisanensis exhibited less growth retardation, a slower decline in fluorescence, and milder increases in stress indices, although many individuals did not fully recover after rehydration. The activity of antioxidant enzymes (SOD, CAT, APX) was more responsive and recovered more efficiently in F. rhynchophylla, while F. chiisanensis had a weaker and delayed response. Transcriptome analysis revealed that photosynthesis and enzyme activity were the most responsive to drought and recovery, as shown by Gene Ontology term analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified common pathways involved in starch and sucrose metabolism and phenylpropanoid biosynthesis in both species. F. rhynchophylla had more differentially expressed genes (DEGs) than F. chiisanensis, particularly on the drought and recovery day 6. Most drought-induced DEGs were restored after rehydration. Commonly associated genes included BGLU and TPS in sugar metabolism; CAT, GSTF, TT7, and HCT in antioxidant enzymes; PYL4 and RR17 in hormone signaling; and ADC1 and ASP3 in proline synthesis. CONCLUSIONS This study highlights the species-specific characteristics of drought and recovery responses of two Fraxinus species and provides targets for assessing and improving drought tolerance. Moreover, the results of this study provide insights into the physiological and genetic responses of Fraxinus and may guide future research on ash tree stress tolerance.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | | | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| |
Collapse
|
3
|
Patil MR, Kale A, Singh AK, Patil PR, Inamdar SB, Satbhai R. Salinity induced changes in esterase, peroxidase and alcohol dehydrogenase isozymes and leaf soluble proteins in salinity susceptible and salinity tolerant sugarcane genotypes. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00880. [PMID: 40041138 PMCID: PMC11879683 DOI: 10.1016/j.btre.2025.e00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/11/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
The salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 were evaluated for Peroxidase (POX), Esterase (EST) and Alcohol Dehydrogenase (ADH) isozymes and soluble protein profiling by SDS and native-PAGE at salinity levels 0.41 dSm-1, 2.31 dSm-1, 4.21 dSm-1, and 8.01 dSm-1 maintained by NaCl solution. The plant height, number of leaves and seedling diameter got reduced in salinity susceptible sugarcane genotype CoC-671 as well as salinity tolerant sugarcane genotype CoM-265 with increase in salinity levels. However, reduction in plant height, number of leaves and seedling diameter was less in salinity tolerant sugarcane genotype CoM-265 as compared to salinity susceptible sugarcane genotype CoC-671. The POX isozyme profiling revealed that salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 had variation in soluble protein band intensity at different salinity levels with relative mobility (Rm) 0.137. The present study could be useful for genetic variability analysis in sugarcane genotypes differing in salinity stress tolerance capability.
Collapse
Affiliation(s)
- Manisha Rameshrao Patil
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
- Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413722, India
| | - A.A. Kale
- Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413722, India
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | | | | | - R.D. Satbhai
- Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413722, India
| |
Collapse
|
4
|
Li J, Zhang H, Zhou C, Teng A, Lei L, Ba Y, Yu J, Li F. Integrated Effects of Water and Nitrogen Coupling on Eggplant Productivity, Fruit Quality, and Resource Use Efficiency in a Cold and Arid Environment. PLANTS (BASEL, SWITZERLAND) 2025; 14:210. [PMID: 39861563 PMCID: PMC11768376 DOI: 10.3390/plants14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W1, 50-60% in field water capacity [FC]), mild water stress (W2, 60-70% in FC), and full irrigation (W3, 70-80% in FC); (2) low nitrogen (N1, 215 kg·ha-1), medium nitrogen (N2, 270 kg·ha-1), and high nitrogen (N3, 325 kg·ha-1). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China. Using the EWM-TOPSIS model, we evaluated different water-nitrogen treatments and determined the optimal irrigation-nitrogen application model for eggplants in this region. The results showed that the W2N2 treatment had the highest yield, which was not significantly (p > 0.05) different from the W3N2 treatment while significantly (p < 0.05) 35.06% higher than CK in 2022 and 36.91% higher in 2023. In the W2N2 treatment, the transverse diameter of eggplants, as well as the contents of soluble protein, soluble sugar, soluble solids, and vitamin C, were all the highest. The W2N2 treatment had the maximum water use efficiency and irrigation water use efficiency, which were significantly higher than other water and nitrogen application treatments and CK by 14.79-42.51% in 2022 and 8.79-44.88% in 2023, and 15.86-45.55% in 2022 and 4.68-40.22% in 2023, respectively. By employing the EWM-TOPSIS model for comprehensive evaluation, the results indicated that mild water deficit (60-70% in FC) and moderate nitrogen application (270 kg·ha-1) at flowering and fruiting of eggplants was the optimal water and nitrogen application mode under mulched drip irrigation in the Hexi region of northwest China. The results will provide some theoretical basis for water-saving, productive, high-quality, and high-efficiency cultivation of eggplant in cold and arid environments.
Collapse
Affiliation(s)
- Jie Li
- College of Agricultural and Biology, Liaocheng University, Liaocheng 252059, China; (J.L.); (C.Z.)
- Yimin Irrigation Experimental Station, Hongshui River Management Office, Minle 734500, China; (A.T.); (L.L.); (Y.B.); (J.Y.)
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hengjia Zhang
- College of Agricultural and Biology, Liaocheng University, Liaocheng 252059, China; (J.L.); (C.Z.)
| | - Chenli Zhou
- College of Agricultural and Biology, Liaocheng University, Liaocheng 252059, China; (J.L.); (C.Z.)
| | - Anguo Teng
- Yimin Irrigation Experimental Station, Hongshui River Management Office, Minle 734500, China; (A.T.); (L.L.); (Y.B.); (J.Y.)
| | - Lian Lei
- Yimin Irrigation Experimental Station, Hongshui River Management Office, Minle 734500, China; (A.T.); (L.L.); (Y.B.); (J.Y.)
| | - Yuchun Ba
- Yimin Irrigation Experimental Station, Hongshui River Management Office, Minle 734500, China; (A.T.); (L.L.); (Y.B.); (J.Y.)
| | - Jiandong Yu
- Yimin Irrigation Experimental Station, Hongshui River Management Office, Minle 734500, China; (A.T.); (L.L.); (Y.B.); (J.Y.)
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Fuqiang Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
5
|
Bayona-Rodríguez C, Romero HM. Drought Resilience in Oil Palm Cultivars: A Multidimensional Analysis of Diagnostic Variables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1598. [PMID: 38931030 PMCID: PMC11207721 DOI: 10.3390/plants13121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Water scarcity is a significant constraint on agricultural practices, particularly in Colombia, where numerous palm cultivators rely on rainfed systems for their plantations. Identifying drought-tolerant cultivars becomes pivotal to mitigating the detrimental impacts of water stress on growth and productivity. This study scrutinizes the variability in drought responses of growth, physiological, and biochemical variables integral to selecting drought-tolerant oil palm cultivars in the nursery. A comprehensive dataset was compiled by subjecting seedlings of eleven cultivars to four soil water potentials (-0.05 MPa, -0.5 MPa, -1 MPa, and -2 MPa) over 60 days. This dataset encompasses growth attributes, photosynthetic parameters like maximum quantum yield and electron transfer rate, gas exchange (photosynthesis, transpiration, and water use efficiency), levels of osmolytes (proline and sugars), abscisic acid (ABA) content, as well as antioxidant-related enzymes, including peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Principal Component Analysis (PCA) elucidated two principal components that account for approximately 65% of the cumulative variance. Noteworthy enzyme activity was detected for glutathione reductase and ascorbate peroxidase. When juxtaposed with the other evaluated cultivars, one of the cultivars (IRHO 7001) exhibited the most robust response to water deficit. The six characteristics evaluated (photosynthesis, predawn water potential, proline, transpiration, catalase activity, sugars) were determined to be the most discriminant when selecting palm oil cultivars with tolerance to water deficit.
Collapse
Affiliation(s)
- Cristihian Bayona-Rodríguez
- Colombian Oil Palm Research Center—Cenipalma, Oil Palm Biology and Breeding Research Program, Bogotá 11121, Colombia;
| | - Hernán Mauricio Romero
- Colombian Oil Palm Research Center—Cenipalma, Oil Palm Biology and Breeding Research Program, Bogotá 11121, Colombia;
- Department of Biology, Universidad Nacional de Colombia, Bogotá 11132, Colombia
| |
Collapse
|
6
|
Peña Barrena LE, Mats L, Earl HJ, Bozzo GG. Phenylpropanoid Metabolism in Phaseolus vulgaris during Growth under Severe Drought. Metabolites 2024; 14:319. [PMID: 38921454 PMCID: PMC11205357 DOI: 10.3390/metabo14060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Drought limits the growth and development of Phaseolus vulgaris L. (known as common bean). Common bean plants contain various phenylpropanoids, but it is not known whether the levels of these metabolites are altered by drought. Here, BT6 and BT44, two white bean recombinant inbred lines (RILs), were cultivated under severe drought. Their respective growth and phenylpropanoid profiles were compared to those of well-irrigated plants. Both RILs accumulated much less biomass in their vegetative parts with severe drought, which was associated with more phaseollin and phaseollinisoflavan in their roots relative to well-irrigated plants. A sustained accumulation of coumestrol was evident in BT44 roots with drought. Transient alterations in the leaf profiles of various phenolic acids occurred in drought-stressed BT6 and BT44 plants, including the respective accumulation of two separate caftaric acid isomers and coutaric acid (isomer 1) relative to well-irrigated plants. A sustained rise in fertaric acid was observed in BT44 with drought stress, whereas the greater amount relative to well-watered plants was transient in BT6. Apart from kaempferol diglucoside (isomer 2), the concentrations of most leaf flavonol glycosides were not altered with drought. Overall, fine tuning of leaf and root phenylpropanoid profiles occurs in white bean plants subjected to severe drought.
Collapse
Affiliation(s)
- Luis Eduardo Peña Barrena
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| | - Lili Mats
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada;
| | - Hugh J. Earl
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| |
Collapse
|
7
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
8
|
Osipova S, Rudikovskii A, Permyakov A, Rudikovskaya E, Pomortsev A, Muzalevskaya O, Pshenichnikova T. Using chlorophyll fluorescence parameters and antioxidant enzyme activity to assess drought tolerance of spring wheat. PHOTOSYNTHETICA 2024; 62:147-157. [PMID: 39651415 PMCID: PMC11613833 DOI: 10.32615/ps.2024.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/19/2024] [Indexed: 12/11/2024]
Abstract
The improvement of phenotyping methods is necessary for large-scale screening studies of wheat (Triticum aestivum L.) drought tolerance. The objective of our research was to find out whether it is possible to use chlorophyll (Chl) fluorescence parameters instead of biochemical indicators of drought tolerance when screening wheat. We measured shoot biomass, gas exchange, as well as biochemical and Chl fluorescence indicators in 11 wheat genotypes grown under contrasting water supplies and differing in drought tolerance. The effect of drought on the traits was evaluated using the effect of size index. We made two independent rankings: one based on biochemical indicators and the other on Chl fluorescence parameters. The positions of the three genotypes with the highest comprehensive drought tolerance index in the two independent rankings coincided completely. It is concluded that Chl fluorescence methods are suitable for identifying soft wheat genotypes that differ significantly in their ability to activate cellular defense mechanisms.
Collapse
Affiliation(s)
- S.V. Osipova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia
- Faculty of Biology and Soil, Irkutsk State University, 664003 Irkutsk, Russia
| | - A.V. Rudikovskii
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia
| | - A.V. Permyakov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia
| | - E.G. Rudikovskaya
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia
| | - A.V. Pomortsev
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia
| | - O.V. Muzalevskaya
- Faculty of Biology and Soil, Irkutsk State University, 664003 Irkutsk, Russia
| | | |
Collapse
|
9
|
Qi J, Yang S, Salam A, Yang C, Khan AR, Wu J, Azhar W, Gan Y. OsRbohI Regulates Rice Growth and Development via Jasmonic Acid Signalling. PLANT & CELL PHYSIOLOGY 2023; 64:686-699. [PMID: 37036744 DOI: 10.1093/pcp/pcad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, generated by nicotinamide adenine dinucleotide phosphate oxidases encoded by respiratory burst oxidase homologs. The functions of the OsRbohs gene family in rice are diverse and poorly understood. OsRbohI was recently identified as a newly evolved gene in the rice OsRbohs gene family. However, the function of OsRbohI in regulating rice growth is not yet reported. In this study, our results indicate that knockout (KO) OsRbohI mutants showed significantly shorter shoot and primary roots, along with lower ROS content than the control lines, whereas the overexpression (OE) lines displayed contrasting results. Further experiments showed that the abnormal length of the shoot and root is mainly caused by altered cell size. These results indicate that OsRbohI regulates rice shoot and root growth through the ROS signal. More importantly, RNA-seq analysis and jasmonic acid (JA) treatment demonstrated that OsRbohI regulates rice growth via the JA synthesis and signaling pathways. Compared with the control, the results showed that the KO mutants were more sensitive to JA, whereas the OE lines were less sensitive to JA. Collectively, our results reveal a novel pathway in which OsRbohI regulates rice growth and development by affecting their ROS homeostasis through JA synthesis and signaling pathway.
Collapse
Affiliation(s)
- Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Chunyan Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Ali Raza Khan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Wardah Azhar
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| |
Collapse
|
10
|
Shamloo-Dashtpagerdi R, Shahriari AG, Tahmasebi A, Vetukuri RR. Potential role of the regulatory miR1119- MYC2 module in wheat ( Triticum aestivum L.) drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1161245. [PMID: 37324698 PMCID: PMC10266357 DOI: 10.3389/fpls.2023.1161245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
MicroRNA (miRNA)-target gene modules are essential components of plants' abiotic stress signalling pathways Little is known about the drought-responsive miRNA-target modules in wheat, but systems biology approaches have enabled the prediction of these regulatory modules and systematic study of their roles in responses to abiotic stresses. Using such an approach, we sought miRNA-target module(s) that may be differentially expressed under drought and non-stressed conditions by mining Expressed Sequence Tag (EST) libraries of wheat roots and identified a strong candidate (miR1119-MYC2). We then assessed molecular and physiochemical differences between two wheat genotypes with contrasting drought tolerance in a controlled drought experiment and assessed possible relationships between their tolerance and evaluated traits. We found that the miR1119-MYC2 module significantly responds to drought stress in wheat roots. It is differentially expressed between the contrasting wheat genotypes and under drought versus non-stressed conditions. We also found significant associations between the module's expression profiles and ABA hormone content, water relations, photosynthetic activities, H2O2 levels, plasma membrane damage, and antioxidant enzyme activities in wheat. Collectively, our results suggest that a regulatory module consisting of miR1119 and MYC2 may play an important role in wheat's drought tolerance.
Collapse
Affiliation(s)
| | - Amir Ghaffar Shahriari
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
11
|
Li D, Yan M, Liang H, Li Z, Zhang S. Exogenous Calcium Induces Different Hydraulic Strategies in Response to Osmotic Stress in Maize Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1999. [PMID: 37653916 PMCID: PMC10223354 DOI: 10.3390/plants12101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Recent discoveries regarding the signal molecules involved in abiotic stresses require integration into the field of plant hydraulic property research. Although calcium (Ca) is an important second messenger involved in numerous complex, abiotic stress-induced signaling pathways, it remains unclear how exogenous calcium mediates cellular signaling to promote plant drought resistance. We investigated the effects of calcium on the water balance and hydraulic properties in maize seedlings (Zea mays L.) under osmotic stress simulated by 10% (m/v) PEG-6000 in a hydroponic culture. The osmotic stress dramatically decreased the photosynthetic rate, transpiration rate, stomatal conductance, leaf water content, and root water absorption. However, the short-term (2 h) and long-term (10 d) exogenous Ca2+ (CaCl2: 10 mM) treatments had different effects on the maize gas exchange parameters and leaf water status. The short-term treatment improved the leaf transpiration by inhibiting the abscisic acid (ABA) synthesis and accumulation in the leaves, generating a stronger transpiration pull and enhancing the root water absorption and axial flow path water transport by increasing the root hydraulic conductance to relieve the osmotic stress-induced inhibition. The long-term treatment induced the ABA and H2O2 accumulation in the roots and leaves. Under osmotic stress, the accumulation of ABA, H2O2, and Ca2+ rapidly repressed the transpiration and enhanced the radial flow path water transport, decreasing the water loss and improving the stress tolerance. These insights suggest a role for a judicious use of Ca fertilizer in reducing the adverse effects of drought on agricultural production.
Collapse
Affiliation(s)
- Dongyang Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Haofeng Liang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Zhe Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| |
Collapse
|
12
|
Goel K, Kundu P, Sharma P, Zinta G. Thermosensitivity of pollen: a molecular perspective. PLANT CELL REPORTS 2023; 42:843-857. [PMID: 37029819 DOI: 10.1007/s00299-023-03003-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
A current trend in climate comprises adverse weather anomalies with more frequent and intense temperature events. Heatwaves are a serious threat to global food security because of the susceptibility of crop plants to high temperatures. Among various developmental stages of plants, even a slight rise in temperature during reproductive development proves detrimental, thus making sexual reproduction heat vulnerable. In this context, male gametophyte or pollen development stages are the most sensitive ones. High-temperature exposure induces pollen abortion, reducing pollen viability and germination rate with a concomitant effect on seed yield. This review summarizes the ultrastructural, morphological, biochemical, and molecular changes underpinning high temperature-induced aberrations in male gametophytes. Specifically, we highlight the temperature sensing cascade operating in pollen, involving reactive oxygen species (ROS), heat shock factors (HSFs), a hormones and transcriptional regulatory network. We also emphasize integrating various omics approaches to decipher the molecular events triggered by heat stress in pollen. The knowledge of genes, proteins, and metabolites conferring thermotolerance in reproductive tissues can be utilized to breed/engineer thermotolerant crops to ensure food security.
Collapse
Affiliation(s)
- Komal Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pravesh Kundu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Paras Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
13
|
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic Insights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030518. [PMID: 36771603 PMCID: PMC9919124 DOI: 10.3390/plants12030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Dramatic climate change has led to an increase in the intensity and frequency of drought episodes and, together with the high light conditions of the Mediterranean area, detrimentally influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS). Foliar application of SA decreased chlorophyll content under normal growth conditions, but under MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased (7%) efficiency of these open reaction centers (Fv'/Fm'), which resulted in an enhanced (24%) electron transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production with less excess excitation energy (EXC).
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Navarra, Spain
| |
Collapse
|
14
|
Ma X, Xu Z, Lang D, Zhou L, Zhang W, Zhang X. Comprehensive physiological, transcriptomic, and metabolomic analyses reveal the synergistic mechanism of Bacillus pumilus G5 combined with silicon alleviate oxidative stress in drought-stressed Glycyrrhiza uralensis Fisch. FRONTIERS IN PLANT SCIENCE 2022; 13:1033915. [PMID: 36570944 PMCID: PMC9773211 DOI: 10.3389/fpls.2022.1033915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Glycyrrhiza uralensis Fisch. is often cultivated in arid, semi-arid, and salt-affected regions that suffer from drought stress, which leads to the accumulation of reactive oxygen species (ROS), thus causing oxidative stress. Plant growth-promoting bacteria (PGPB) and silicon (Si) have been widely reported to be beneficial in improving the tolerance of plants to drought stress by maintaining plant ROS homeostasis. Herein, combining physiological, transcriptomic, and metabolomic analyses, we investigated the response of the antioxidant system of G. uralensis seedlings under drought stress to Bacillus pumilus (G5) and/or Si treatment. The results showed that drought stress caused the overproduction of ROS, accompanied by the low efficiency of antioxidants [i.e., superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate (AsA)-glutathione (GSH) pool, total carotenoids, and total flavonoids]. Inversely, supplementation with G5 and/or Si enhanced the antioxidant defense system in drought-stressed G. uralensis seedlings, and the complex regulation of the combination of G5 and Si differed from that of G5 or Si alone. The combination of G5 and Si enhanced the antioxidant enzyme system, accelerated the AsA-GSH cycle, and triggered the carotenoid and flavonoid metabolism, which acted in combination via different pathways to eliminate the excess ROS induced by drought stress, thereby alleviating oxidative stress. These findings provide new insights into the comparative and synergistic roles of PGPB and Si in the antioxidant system of plants exposed to drought and a guide for the application of PGPB combined with Si to modulate the tolerance of plants to stress.
Collapse
Affiliation(s)
- Xin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhanchao Xu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Li Zhou
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
15
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
16
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, Satish L, Ceasar SA, Sohn SI, Ramesh M. Conventional and Omics Approaches for Understanding the Abiotic Stress Response in Cereal Crops-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:2852. [PMID: 36365305 PMCID: PMC9655223 DOI: 10.3390/plants11212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/22/2023]
Abstract
Cereals have evolved various tolerance mechanisms to cope with abiotic stress. Understanding the abiotic stress response mechanism of cereal crops at the molecular level offers a path to high-yielding and stress-tolerant cultivars to sustain food and nutritional security. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. Omics approaches generate a massive amount of data, and adequate advancements in computational tools have been achieved for effective analysis. The combination of integrated omics and bioinformatics approaches has been recognized as vital to generating insights into genome-wide stress-regulation mechanisms. In this review, we have described the self-driven drought, heat, and salt stress-responsive mechanisms that are highlighted by the integration of stress-manipulating components, including transcription factors, co-expressed genes, proteins, etc. This review also provides a comprehensive catalog of available online omics resources for cereal crops and their effective utilization. Thus, the details provided in the review will enable us to choose the appropriate tools and techniques to reduce the negative impacts and limit the failures in the intensive crop improvement study.
Collapse
Affiliation(s)
- Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, Mandapam Camp, CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 623519, Tamil Nadu, India
| | | | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
17
|
Zheng T, Wu G, Tao X, He B. Arabidopsis SUMO E3 ligase SIZ1 enhances cadmium tolerance via the glutathione-dependent phytochelatin synthesis pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111357. [PMID: 35718335 DOI: 10.1016/j.plantsci.2022.111357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Sumoylation is a posttranslational modification (PTM) in which SUMO (small ubiquitin-like modifier) is covalently conjugated to protein substrates via a range of enzymes. SUMO E3 ligase SIZ1 is involved in mediating several essential or nonessential element-responsive SUMO conjugations in Arabidopsis. However, whether SIZ1 is involved in the cadmium (Cd) response remains to be identified. In this study, we found that SIZ1 positively regulates plant Cd tolerance. The loss-of-function siz1-2 mutant exhibited impaired resistance to Cd exposure and accumulated more reactive oxygen species (ROS). Moreover, the transcription of GSH1, GSH2, PCS1, and PCS2 was suppressed while the accumulation of Cd was enhanced in the siz1-2 mutant under Cd exposure. Further analysis revealed that the higher Cd sensitivity of the siz1-2 mutant was partially rescued by the overexpression of GSH1. Consistently, Cd stress stimulated the accumulation of SUMO1 conjugates in wild-type plants but not in the siz1-2 mutant. Together, our results demonstrate that Cd-induced SIZ1 activates GSH- and PC synthesis-related gene expression to increase the synthesis of GSH- and PCs, thereby leading to higher Cd tolerance in plants.
Collapse
Affiliation(s)
- Ting Zheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China; Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China.
| | - Guo Wu
- College of Life Sciences, Sichuan Normal University, Chengdu, China; Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bing He
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
18
|
Tiwari M. Blessing in disguise: A loss of miR159 makes plant drought tolerant and ABA sensitive. PHYSIOLOGIA PLANTARUM 2022; 174:e13763. [PMID: 36281837 PMCID: PMC9543322 DOI: 10.1111/ppl.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Manish Tiwari
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
19
|
Singh AK, Raina SK, Kumar M, Aher L, Ratnaparkhe MB, Rane J, Kachroo A. Modulation of GmFAD3 expression alters abiotic stress responses in soybean. PLANT MOLECULAR BIOLOGY 2022; 110:199-218. [PMID: 35779188 DOI: 10.1007/s11103-022-01295-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE This study focused on enhancing resilience of soybean crops to drought and salinity stresses by overexpression of GmFAD3A gene, which plays an important role in modulating membrane fluidity and ultimately influence plants response to various abiotic stresses. Fatty acid desaturases (FADs) are a class of enzymes that mediate desaturation of fatty acids by introducing double bonds. They play an important role in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of GmFAD3 in drought and salinity stress tolerance in soybean is lacking. We used bean pod mottle virus (BPMV)-based vector for achieving rapid and efficient overexpression as well as silencing of Omega-3 Fatty Acid Desaturase gene from Glycine max (GmFAD3) to assess the functional role of GmFAD3 in abiotic stress responses in soybean. Higher levels of recombinant BPMV-GmFAD3A transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3A in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. The GmFAD3A-overexpressing plants showed higher levels of chlorophyll content, efficient photosystem-II, relative water content, transpiration rate, stomatal conductance, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from the current study revealed that GmFAD3A-overexpressing soybean plants exhibited tolerance to drought and salinity stresses. However, soybean plants silenced for GmFAD3 were vulnerable to drought and salinity stresses.
Collapse
Affiliation(s)
- Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| | - Susheel Kumar Raina
- National Bureau of Plant Genetic Resources, Regional Station, Srinagar, Jammu & Kashmir, 191132, India
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Lalitkumar Aher
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | | | - Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
20
|
The Examination of the Role of Rice Lysophosphatidic Acid Acyltransferase 2 in Response to Salt and Drought Stresses. Int J Mol Sci 2022; 23:ijms23179796. [PMID: 36077191 PMCID: PMC9456497 DOI: 10.3390/ijms23179796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.
Collapse
|
21
|
Song C, Fan Q, Tang Y, Sun Y, Wang L, Wei M, Chang Y. Overexpression of DfRaf from Fragrant Woodfern (Dryopteris fragrans) Enhances High-Temperature Tolerance in Tobacco (Nicotiana tabacum). Genes (Basel) 2022; 13:genes13071212. [PMID: 35885995 PMCID: PMC9321628 DOI: 10.3390/genes13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Heat stress seriously affects medicinal herbs’ growth and yield. Rubisco accumulation factor (Raf) is a key mediator regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which plays important roles in carbon assimilation and the Calvin cycle in plants. Raf has been studied in many plants, but has rarely been studied in the important medicinal plant fragrant woodfern (Dryopteris fragrans). The aim of this study was to analyze the effects of Raf on carbohydrate metabolism and the response to heat stress in medicinal plants. In this study, high temperature treatment upregulated the expression of DfRaf, which was significantly higher than that of phosphoribokinase (DfPRK), Rubisco small subunits (DfRbcS), Rubisco large subunits (DfRbcL) and Rubisco activase (DfRCA). The subcellular localization showed that the DfRaf proteins were primarily located in the nucleus; DfPRK, DfRbcS, DfRbcL and DfRCA proteins were primarily located in the chloroplast. We found that overexpression of DfRaf led to increased activity of Rubisco, RCA and PRK under high-temperature stress. The H2O2, O2− and MDA content of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were significantly lower than those of WT and VC plants under high-temperature stress. The photosynthetic pigments, proline, soluble sugar content and ROS-scavenging ability of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were higher than those of WT and VC plants under high-temperature stress. The results showed that overexpression of the DfRaf gene increased the Rubisco activity, which enhanced the high-temperature tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- Correspondence: ; Tel.: +86-(0451)-5519-0410
| |
Collapse
|
22
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|