1
|
Xu L, Wang C, Liu Y, Zhang Y, Li Z, Pang L. MASP1 modulation as a novel therapeutic target in severe pediatric pertussis: insights from a multi-omics approach. Infect Immun 2025; 93:e0027124. [PMID: 39841046 PMCID: PMC11834402 DOI: 10.1128/iai.00271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Pertussis, a severe infectious disease in children, has become increasingly prominent in recent years. This study aims to investigate the role of the MASP1 protein in severe pertussis in children through multi-omics analysis, providing a theoretical basis for the development of novel therapeutic strategies. The study retrieved macro-genome and 16S rRNA data of pediatric pertussis from public databases to analyze microbial diversity and specific flora abundance, conducting pathway functional enrichment analysis. Differential expression analysis of transcriptome data and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, combined with machine learning, identified the key gene MASP1. A Bordetella pertussis infection model was established using human bronchial epithelial cell line HBE135-E6E7 to validate MASP1 expression changes and investigate its relationship with airway epithelial cell damage by constructing cell lines overexpressing and knocking down MASP1. Finally, the impact of inhibiting MASP1 expression on infection symptoms was evaluated using a mouse pertussis infection model. The results revealed significant differences in microbial diversity and specific flora abundance between healthy children and those with pertussis, with MASP1 significantly upregulated in severe pertussis and its inhibition alleviating infection symptoms. The study highlights the critical role of MASP1 in pertussis, providing a crucial foundation for developing therapeutic strategies targeting MASP1.
Collapse
Affiliation(s)
- Lin Xu
- Department of Pediatrics, Beijing Ditan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Caiying Wang
- Department of Pediatrics, Beijing Ditan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuhuan Liu
- Department of Pediatrics, Beijing Ditan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yanlan Zhang
- Department of Pediatrics, Beijing Ditan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Lin Pang
- Department of Pediatrics, Beijing Ditan Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xu X, Wu C, Zhang F, Yao J, Fan L, Liu Z, Yao Y. Comprehensive review of Plasmodiophora brassicae: pathogenesis, pathotype diversity, and integrated control methods. Front Microbiol 2025; 16:1531393. [PMID: 39980695 PMCID: PMC11840573 DOI: 10.3389/fmicb.2025.1531393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Clubroot disease is an important disease of cruciferous crops worldwide caused by Plasmodiophora brassicae. The pathogen P. brassicae can infect almost all cruciferous crops, resulting in a reduction in yield and quality of the host plant. The first part of this review outlines the process of P. brassicae infestation, effectors, physiological pathotypes and identification systems. The latter part highlights and summarizes the various current control measures and research progress on clubroot. Finally, we propose a strategic concept for the sustainable management of clubroot. In conclusion, this paper will help to deepen the knowledge of P. brassicae and the understanding of integrated control measures for clubroot, and to lay a solid foundation for the sustainable management of clubroot.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingjuan Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
3
|
Zhang Y, Gong W, Gao Y, Zhao K, Wang F, Liu Y, Zhang M, Yu X. Pathotype Identification and Host Resistance Evaluation of Clubroot in Zhejiang Province, China. PLANT DISEASE 2024; 108:3473-3483. [PMID: 39082928 DOI: 10.1094/pdis-12-23-2748-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a globally destructive soilborne disease affecting cruciferous plants. In this study, the predominant pathotypes of P. brassicae in six cities within Zhejiang Province were identified using the Williams and European clubroot differential (ECD) systems. A phylogenetic analysis of P. brassicae isolates infecting cruciferous crops worldwide was conducted using MEGA, and their ITS2 secondary structures were predicted through the ITS2 database. Accessions of Brassica rapa, B. oleracea, B. juncea, and Eruca sativa Mill. were employed to assess clubroot resistance. The results revealed that the prevalent pathotypes in Zhejiang Province were pathotype 1, ECD20/31/12 and ECD24/16/30; pathotype 3, ECD20/15/4; pathotype 8, ECD16/0/0 and ECD24/0/0; and pathotype 2, ECD16/15/15. Isolates from distinct genera of Brassicaceae formed separate branches in the evolutionary tree. Moreover, isolates of Brassica crops from Zhejiang Province exhibited homology with those from other global regions, a finding corroborated by their ITS2 secondary structure. Approximately 80 and 95% of B. rapa and B. juncea crops displayed susceptible phenotypes for pathotype 8, ECD16/0/0, whereas approximately 60% of B. oleracea crops exhibited resistance. Furthermore, three Brassica crop accessions showed significant variation in resistance to the pathogen, both among morphological and geographical origin groups. This study contributes to understanding the distribution of diverse P. brassicae pathotypes in different regions of Zhejiang Province and facilitates the identification of Brassica crops with potential disease resistance suitable for cultivation in the province.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Wenfeng Gong
- College of Plant Science, Xizang Agricultural and Animal Husbandry College, Nyingchi 860000, China
| | - Yingying Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Kun Zhao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Fangzhan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Yapei Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Mei Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
- College of Plant Science, Xizang Agricultural and Animal Husbandry College, Nyingchi 860000, China
| |
Collapse
|
4
|
Ritonga FN, Gong Z, Zhang Y, Wang F, Gao J, Li C, Li J. Exploiting Brassica rapa L. subsp. pekinensis Genome Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:2823. [PMID: 39409693 PMCID: PMC11478547 DOI: 10.3390/plants13192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Chinese cabbage, Brassica rapa L. subsp. pekinensis is a crucial and extensively consumed vegetable in the world, especially Eastern Asia. The market demand for this leafy vegetable increases year by year, resulting in multiple challenges for agricultural researchers worldwide. Multi-omic approaches and the integration of functional genomics helps us understand the relationships between Chinese cabbage genomes and phenotypes under specific physiological and environmental conditions. However, challenges exist in integrating multi-omics for the functional analysis of genes and for developing potential traits for Chinese cabbage improvement. However, the panomics platform allows for the integration of complex omics, enhancing our understanding of molecular regulator networks in Chinese cabbage agricultural traits. In addition, the agronomic features of Chinese cabbage are significantly impacted by the environment. The expression of these agricultural features is tightly regulated by a combination of signals from both the internal regulatory network and the external growth environment. To comprehend the molecular process of these characteristics, it is necessary to have a prior understanding of molecular breeding for the objective of enhancing quality. While the use of various approaches in Chinese cabbage is still in its early stages, recent research has shown that it has the potential to uncover new regulators both rapidly and effectively, leading to updated regulatory networks. In addition, the utilization of the efficient transformation technique in conjunction with gene editing using CRISPR/Cas9 will result in a reduction in time requirements and facilitate a more precise understanding of the role of the regulators. Numerous studies about Chinese cabbage have been conducted in the past two decades, but a comprehensive review about its genome still limited. This review provides a concise summary of the latest discoveries in genomic research related to Brassica and explores the potential future developments for this species.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
- Faculty of Forestry, Universitas Sumatera Utara, USU 2 Bekala Campus, Pancurbatu, Deli Serdang 20355, Indonesia
| | - Zeyu Gong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250358, China;
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Cheng Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| |
Collapse
|
5
|
Zhang H, Liu X, Zhou J, Strelkov SE, Fredua-Agyeman R, Zhang S, Li F, Li G, Wu J, Sun R, Hwang SF, Zhang S. Identification of Clubroot ( Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage ( Brassica rapa ssp. pekinensis) with Recessive Character. Genes (Basel) 2024; 15:274. [PMID: 38540333 PMCID: PMC10970103 DOI: 10.3390/genes15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Xitong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jinyan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| |
Collapse
|
6
|
Salih R, Brochu AS, Labbé C, Strelkov SE, Franke C, Bélanger R, Pérez-López E. A Hydroponic-Based Bioassay to Facilitate Plasmodiophora brassicae Phenotyping. PLANT DISEASE 2024; 108:131-138. [PMID: 37536345 DOI: 10.1094/pdis-05-23-0959-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases affecting the canola/oilseed rape (Brassica napus) industry worldwide. Currently, the planting of clubroot-resistant (CR) cultivars is the most effective strategy used to restrict the spread and the economic losses linked to the disease. However, virulent P. brassicae isolates have been able to infect many of the currently available CR cultivars, and the options to manage the disease are becoming limited. Another challenge has been achieving consistency in evaluating host reactions to P. brassicae infection, with most bioassays conducted in soil and/or potting medium, which requires significant space and can be labor intensive. Visual scoring of clubroot symptom development can also be influenced by user bias. Here, we have developed a hydroponic bioassay using well-characterized P. brassicae single-spore isolates representative of clubroot virulence in Canada, as well as field isolates from three Canadian provinces in combination with canola inbred homozygous lines carrying resistance genetics representative of CR cultivars available to growers in Canada. To improve the efficiency and consistency of disease assessment, symptom severity scores were compared with clubroot evaluations based on the scanned root area. According to the results, this bioassay offers a reliable, less expensive, and reproducible option to evaluate P. brassicae virulence, as well as to identify which canola resistance profile(s) may be effective against particular isolates. This bioassay will contribute to the breeding of new CR canola cultivars and the identification of virulence genes in P. brassicae that could trigger resistance and that have been very elusive to this day.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rasha Salih
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Sophie Brochu
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Caroline Labbé
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Coreen Franke
- Nutrien Ag Solutions Canada, Saskatoon, SK S4N 4L8, Canada
| | - Richard Bélanger
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Genetic Diversity and DNA Fingerprinting in Broccoli Carrying Multiple Clubroot Resistance Genes Based on SSR Markers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To identify cultivars quickly and accurately, DNA fingerprinting of 10 broccoli varieties was performed by using simple sequence repeat (SSR) marker technology. Highly informative and polymorphic SSR markers were screened using broccoli and rapeseed. Out of the 93 SSR marker pairs, 21 pairs were selected and found to have good polymorphism. Each marker pair generated 1 to 10 polymorphic bands with an average of 4.29. The average polymorphism information content (PIC) was 0.41 with a range from 0.16 to 0.95. Six selected marker pairs established the fingerprinting of the 10 accessions and their unique fingerprints. Cluster analysis of 10 accessions showed that the genetic similarity coefficient was between 0.57 and 0.91. They can be divided into 3 groups at the genetic similarity coefficient (GSC) of 0.73. The above results indicated that DNA fingerprinting could provide a scientific basis for the identification of broccoli polymerized multiple clubroot resistance genes. Research shows that SSR marker-based DNA fingerprinting further ensures plant seed purity.
Collapse
|