1
|
Suma A, Joseph John K, Bhat KV, Latha M, Lakshmi CJ, Pitchaimuthu M, Nissar VAM, Thirumalaisamy PP, Pandey CD, Pandey S, Kumar A, Gautam RK, Singh GP. Genetic enhancement of okra [ Abelmoschus esculentus (L.) Moench] germplasm through wide hybridization. FRONTIERS IN PLANT SCIENCE 2023; 14:1284070. [PMID: 38023890 PMCID: PMC10654990 DOI: 10.3389/fpls.2023.1284070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Introduction The introgression of genetic material from one species to another through wide hybridization and repeated back-crossing, plays an important role in genetic modification and enriching the cultivated gene-pool with novel genetic variations. Okra (Abelmoschus esculentus [(L.) Moench)] is a popular vegetable crop with high dietary fibre and protein, rich in essential amino acids, lysine and tryptophan. The wild Abelmoschus genepool has many desirable traits like ornamental value, short internodal length, more number of productive branches, extended bearing, perennation tendency, reduced fruit length (more consumer preferred trait), high mucilage content (medicinal value), abiotic stress tolerances such as drought, high temperature and biotic stress resistances such as okra Yellow Vein Mosaic Virus (YVMV) and Enation Leaf Curl Virus (ELCV) diseases. The repeated use of elite breeding lines led to narrowing of the genetic base of the okra crop, one of the major factors attributed to breakdown of resistance/ tolerance to biotic stresses. YVMV and ELCV are the two major diseases, causing significant yield loss in okra. Hence, wide hybridization was attempted to transfer tolerance genes from wild species to the cultivated genepool to widen the genetic base. Material and methods The screening of germplasm of wild Abelmoschus species at hotspots led to the identification of tolerant species (Abelmoschus pungens var. mizoramensis, A. enbeepeegeearensis, A. caillei, A. tetraphyllus and A. angulosus var. grandiflorus), which were further used in a wide-hybridization programme to generate interspecific hybrids with the cultivated okra. Presence of pre- and post-zygotic barriers to interspecific geneflow, differences in ploidy levels and genotype specific variations in chromosome numbers led to varying degrees of sterility in F1 plants of interspecific crosses. This was overcome by doubling the chromosome number of interspecific hybrids by applying Colchicine at the seedling stage. The 113 cross derivatives generated comprising amphidiploids in the F1 generation (30), F3 (14), one each in F2 and F4 generations, back cross generation in BC1F2 (03), BC1F3 (25), and BC2F3 (02), crosses between amphidiploids (27), multi-cross combinations (07) and inter-specific cross (between A. sagittifolius × A. moschatus subsp. moschatus) selfed derivatives at F8 generation (03) were characterized in the present study. Besides they were advanced through selfing and backcrossing. Results and Discussion The amphidiploids were found to possess many desirable genes with a considerable magnitude of linkage drag. Majority of the wide cross derivatives had an intermediate fruit morphology and dominance of wild characters viz., hispid fruits, stem, leaves, tough fruit fibre, vigorous perennial growth habit and prolonged flowering and fruiting. The fruit morphology of three BC progenies exhibited a high morphological resemblance to the cultivated okra, confirming successful transfer of useful genes to the cultivated okra genepool. The detailed morphological characteristics of the various combinations of Abelmoschus amphidiploids and the genetic enhancement of the genepool achieved in this process is reported here.
Collapse
Affiliation(s)
- A. Suma
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Thrissur, Kerala, India
| | - K. Joseph John
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Thrissur, Kerala, India
| | | | - Madhavan Latha
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Thrissur, Kerala, India
| | | | | | - V. A. M. Nissar
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Thrissur, Kerala, India
| | | | | | - Sushil Pandey
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Raj Kumar Gautam
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
2
|
Rizwan M, Haider SZ, Bakar A, Rani S, Danial M, Sharma V, Mubin M, Serfraz A, Shahnawaz-Ur-Rehman M, Shakoor S, Alkahtani S, Saleem F, Mamoon-Ur-Rehman H, Serfraz S. Evolution of NLR genes in genus Arachis reveals asymmetric expansion of NLRome in wild and domesticated tetraploid species. Sci Rep 2023; 13:9305. [PMID: 37291184 PMCID: PMC10250334 DOI: 10.1038/s41598-023-36302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Syed Zeeshan Haider
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Abu Bakar
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shamiza Rani
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425, Jülich, Germany
| | - Muhammad Mubin
- Virology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ali Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi , Pakistan
| | | | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
3
|
Huang R, Li H, Gao C, Yu W, Zhang S. Advances in omics research on peanut response to biotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101994. [PMID: 37284721 PMCID: PMC10239885 DOI: 10.3389/fpls.2023.1101994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
Peanut growth, development, and eventual production are constrained by biotic and abiotic stresses resulting in serious economic losses. To understand the response and tolerance mechanism of peanut to biotic and abiotic stresses, high-throughput Omics approaches have been applied in peanut research. Integrated Omics approaches are essential for elucidating the temporal and spatial changes that occur in peanut facing different stresses. The integration of functional genomics with other Omics highlights the relationships between peanut genomes and phenotypes under specific stress conditions. In this review, we focus on research on peanut biotic stresses. Here we review the primary types of biotic stresses that threaten sustainable peanut production, the multi-Omics technologies for peanut research and breeding, and the recent advances in various peanut Omics under biotic stresses, including genomics, transcriptomics, proteomics, metabolomics, miRNAomics, epigenomics and phenomics, for identification of biotic stress-related genes, proteins, metabolites and their networks as well as the development of potential traits. We also discuss the challenges, opportunities, and future directions for peanut Omics under biotic stresses, aiming sustainable food production. The Omics knowledge is instrumental for improving peanut tolerance to cope with various biotic stresses and for meeting the food demands of the exponentially growing global population.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Puppala N, Nayak SN, Sanz-Saez A, Chen C, Devi MJ, Nivedita N, Bao Y, He G, Traore SM, Wright DA, Pandey MK, Sharma V. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front Genet 2023; 14:1121462. [PMID: 36968584 PMCID: PMC10030941 DOI: 10.3389/fgene.2023.1121462] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.
Collapse
Affiliation(s)
- Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: Naveen Puppala,
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Mura Jyostna Devi
- USDA-ARS Vegetable Crops Research, Madison, WI, United States
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Nivedita Nivedita
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Yin Bao
- Biosystems Engineering Department, Auburn University, Auburn, AL, United States
| | - Guohao He
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Sy M. Traore
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - David A. Wright
- Department of Biotechnology, Iowa State University, Ames, IA, United States
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|