1
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Guedes JP, Boyer JB, Elurbide J, Carte B, Redeker V, Sago L, Meinnel T, Côrte-Real M, Giglione C, Aldabe R. NatB Protects Procaspase-8 from UBR4-Mediated Degradation and Is Required for Full Induction of the Extrinsic Apoptosis Pathway. Mol Cell Biol 2024; 44:358-371. [PMID: 39099191 PMCID: PMC11376409 DOI: 10.1080/10985549.2024.2382453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.
Collapse
Affiliation(s)
- Joana P. Guedes
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Jean Baptiste Boyer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jasmine Elurbide
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Beatriz Carte
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Manuela Côrte-Real
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Rafael Aldabe
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
5
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Lopez-Ortiz C, Reddy UK, Zhang C, Natarajan P, Nimmakayala P, Benedito VA, Fabian M, Stommel J. QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1200999. [PMID: 37615029 PMCID: PMC10443646 DOI: 10.3389/fpls.2023.1200999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Chong Zhang
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | | | - Matthew Fabian
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - John Stommel
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
7
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|