1
|
Lee Y, An H, Yoon S, Jeong ST, Lee CH, Das S, Kim SY. Simultaneous reduction of greenhouse gas and NH 3 emissions by combined application of organic and inorganic fertilizers in maize-cabbage cropping systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123629. [PMID: 39657471 DOI: 10.1016/j.jenvman.2024.123629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Intensive nitrogen (N) fertilization enhances crop yield but also increases ammonia (NH3) and greenhouse gas (GHG) emissions (CO2, CH4 and N2O), requiring sustainable fertilization regimes. The co-application of organic and inorganic fertilizers can decrease the use of inorganic fertilizer, reduce environmental pollution, and enhance soil fertility. A simultaneous investigation of the effects of combined application of organic and inorganic fertilizers on NH3 volatilization, GHG emissions, and soil fertility is, however, lacking. The aim of this study was to investigate the effect of the co-application of organic and inorganic fertilizers on NH3 and GHG emissions by the static chamber method, greenhouse gas intensity (GHGI), soil properties, and productivity over two cropping seasons of maize and cabbage cultivation at two different soil type in 2020 and 2021. All treatments except the control (no fertilizer) were applied with equivalent N rates, including NPK, compost, and NPK + compost. Total NH3 volatilization increased significantly (p ≤ 0.05) in all fertilizer treatments compared to the control. Interestingly, the combined application of organic and inorganic fertilizers was effective on significantly reducing NH3 volatilization which showed 28-37% reductions and decreasing N2O emissions by 61-62% over the NPK treatment in successive cropping seasons, mainly due to enhanced N retention in soils, irrespective of soil type. CO2 emissions increased in the compost amended treatments compared to the control, showing that compost application was the main contributor affecting the total GWP in upland soils. However, CH4 emissions were negligible on total GWP in both soil types. The combined application of inorganic and organic fertilizers significantly improved the physicochemical properties of the soils compared with the control and NPK treatments, and the improvement in the soil properties is equivalent to that of the compost treatment. The productivity of maize and cabbage increased significantly with N fertilization. However, there was no significant difference between the NPK treatment and the NPK + compost. The GHGI, a sustainability parameter, was the lowest in the NPK + compost throughout the successive growing seasons, irrespective of soil type. Therefore, co-application of inorganic and organic fertilizers to upland soils could be a sustainable and promising strategy for improving soil properties and crop productivity while minimizing greenhouse gas emissions and N losses.
Collapse
Affiliation(s)
- Yeomyeong Lee
- Department of Agricultural Chemistry & Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Hyerin An
- Department of Agricultural Chemistry & Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sohee Yoon
- Department of Agricultural Chemistry & Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Seung Tak Jeong
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Chang Hoon Lee
- Department of Horticulture, Korea National University of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Yoon Kim
- Department of Agricultural Chemistry & Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea; Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
2
|
Shanks CM, Rothkegel K, Brooks MD, Cheng CY, Alvarez JM, Ruffel S, Krouk G, Gutiérrez RA, Coruzzi GM. Nitrogen sensing and regulatory networks: it's about time and space. THE PLANT CELL 2024; 36:1482-1503. [PMID: 38366121 PMCID: PMC11062454 DOI: 10.1093/plcell/koae038] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Rothkegel
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Chia-Yi Cheng
- Department of Life Science, National Taiwan University, Taipei 10663, Taiwan
| | - José M Alvarez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Rodrigo A Gutiérrez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Li H, Wang Q, Huang T, Liu J, Zhang P, Li L, Xie H, Wang H, Liu C, Qin P. Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers. Int J Mol Sci 2023; 24:11580. [PMID: 37511340 PMCID: PMC10380953 DOI: 10.3390/ijms241411580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.
Collapse
Affiliation(s)
- Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Nizzy AM, Kannan S. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69223-69240. [PMID: 35962891 DOI: 10.1007/s11356-022-22500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns-primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.
Collapse
Affiliation(s)
- Albert Mariathankam Nizzy
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
5
|
Growth, Yield and Photosynthetic Performance of Winter Wheat as Affected by Co-Application of Nitrogen Fertilizer and Organic Manures. Life (Basel) 2022; 12:life12071000. [PMID: 35888089 PMCID: PMC9319553 DOI: 10.3390/life12071000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
The application of organic manures was found to be beneficial, however, the integrated use of organic manures with chemical nitrogen fertilizers has proven more sustainable in increasing the photosynthetic attributes and grain yield of the winter-wheat crop. A multi-factor split-plot design was adopted, nitrogen and manure fertilizer treatments were set in the sub-plots, including nitrogen-gradient treatment of T1:0 kg N ha−1, T2:100 kg N ha−1, T3:200 kg N ha−1, and T4:300 kg N ha−1 (pure nitrogen -fertilizer application) The 25% reduction in nitrogen combined with the manure-fertilizer application includes T5:75 kg N ha−1 nitrogen and 25 kg N ha−1 manure, T6:150 kg N ha−1 nitrogen and 50 kg N ha−1 manure, and T7:225 kg N ha−1 nitrogen and 75 kg N ha−1 manure. The maximum results of the total chlorophyll content and photosynthetic rate were 5.73 mg/g FW and 68.13 m mol m−2 s−1, observed under T4 in Zhongmai 175, as compared to Jindong 22 at the heading stage. However, the maximum results of intercellular CO2 concentration were 1998.47 μmol mol−1, observed under T3 in Jindong 22, as compared to Zhongmai 175 at the tillering stage. The maximum results of LAI were 5.35 (cm2), observed under T7 in Jindong 22, as compared to Zhongmai 175 at the booting stage. However, the maximum results of Tr and Gs were 6.31 mmol H2O m−2 s−1 and 0.90 H2O mol m−2 s−1, respectively, observed under T7 in Zhongmai 175 as compared to Jindong 22 at the flowering stage. The results revealed that grain yield 8696.93 kg ha−1, grains spike−1 51.33 (g), and 1000-grain weight 39.27 (g) were significantly higher, under T3 in Zhongmai 175, as compared to Jindong 22. Moreover, the spike number plot−1 of 656.67 m2 was significantly higher in Jindong 22, as compared to Zhongmai 175. It was concluded from the study that the combined application of nitrogen and manure fertilizers in winter wheat is significant for enhancing seed at the jointing and flowering stages. For increased grain yield and higher economic return, Zhongmai 175 outperformed the other cultivars examined. This research brings awareness toward the nitrogen-fertilizer-management approach established for farmers’ practice, which might be observed as an instruction to increase agricultural management for the winter-wheat-growth season.
Collapse
|