1
|
Quispe APV, Morais EGD, Benevenute PAN, Lima JDS, Dos Santos LC, Silva MA, Chalfun-Júnior A, Marchiori PER, Guilherme LRG. Priming effect with selenium and iodine on broccoli seedlings: Activation of biochemical mechanisms to mitigate cold damages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109876. [PMID: 40199165 DOI: 10.1016/j.plaphy.2025.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to improve broccoli seedlings' cold stress tolerance by priming them with selenium (Se) and iodine (I). Different doses of selenium (0, 25, 50, and 75 mg L-1) and iodine (0, 50, 100, 250, and 500 mg L-1) were applied individually and in combination, totaling 21 treatments. After foliar spraying of Se and I, the seedlings were exposed to 20/2 °C (day/night) for three days. Antioxidant enzyme activities and osmoprotectant contents were then analyzed. Se75, Se75+I50, and I100 treatments significantly reduced leaf damage (2.64 %, 3.11 %, and 9.05 %, respectively). In addition, the results showed that Se, I, and their combination (Se + I) activate different defense mechanisms in broccoli seedlings, enhancing the activity of antioxidant enzymes and the accumulation of osmoprotectants. Our results indicate that applying Se and I proved to be an effective strategy to alleviate low-temperature stress, significantly reducing leaf damage. These findings are promising since they allow for optimizing broccoli production in regions with cold climatic conditions, improving stress tolerance at critical stages of plant development, thus reducing agricultural losses associated with low temperatures.
Collapse
Affiliation(s)
- Anyela Pierina Vega Quispe
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Everton Geraldo de Morais
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Pedro Antônio Namorato Benevenute
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Jucelino de Sousa Lima
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Leônidas Canuto Dos Santos
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Maila Adriely Silva
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Antônio Chalfun-Júnior
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Paulo Eduardo Ribeiro Marchiori
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras, 37203-202, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Cheng S, Xiao W, Shi F, Zhao Z, Gao X, Zhang Y, Huang H, Li F, Cao C, Han J. A Bifunctional "Two-in-One" Array for Simultaneous Diagnosis of Irritable Bowel Syndrome and Identification of Low-FODMAP Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3772-3784. [PMID: 39785268 DOI: 10.1021/acs.jafc.4c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Irritable bowel syndrome (IBS) is a globally prevalent functional gastrointestinal disorder frequently misdiagnosed due to overlapping symptoms with other diseases. Currently, there are no rapid and effective diagnostic or therapeutic approaches for IBS. Despite this, low-FODMAP diets (LFDs) have become a major dietary intervention strategy for symptom relief. However, detecting FODMAPs usually relies on chromatographic techniques, which are costly and time-consuming, making it difficult to apply in real-time detection. In this study, we introduce the first dual-functional sensor array capable of rapidly diagnosing IBS and identifying low-FODMAP diets. This six-element array was constructed using nitrophenylboronic acid-modified poly(ethylenimine) coupled with coumarins through dynamic borate ester bonds across a range of pH conditions. Optimized by diverse machine learning algorithms, with the multilayer perceptron (MLP) algorithm proving optimal, the array enabled the simultaneous identification of 12 intestinal bacteria with 99.2% accuracy and the detection of mouse fecal specimens with varying degrees of IBS with 99.8% accuracy within seconds. Furthermore, it allowed for the detection of various FODMAP levels in commercially purchased, brand-named, and differently processed soy milk. The array demonstrates potential for use in both the clinical diagnosis of IBS and the guiding of low-FODMAP diets for patients.
Collapse
Affiliation(s)
- Shujie Cheng
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqi Xiao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fangfang Shi
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zihao Zhao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xuejuan Gao
- Dian Jiang General Hospital of Chongqing, Chongqing 408300, China
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210004, Jiangsu, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Chongjiang Cao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Nagime PV, Pandey VK, Rajpal C, Jayeoye TJ, Kumar A, Chidrawar VR, Singh S. Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity. Z NATURFORSCH C 2025:znc-2024-0176. [PMID: 39920565 DOI: 10.1515/znc-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
Biogenic selenium nanoparticles (SeNPs) have emerged as promising area of research due to their unique properties and potential multifaceted applications. The biosynthesis of SeNPs through biological methods, such as using microorganism, plant extracts, etc., offers a safe, eco-friendly, and biocompatible approach, compared to traditional chemical synthesis. Recent several studies demonstrated that multifaceted application of SeNPs includes a broad area such as antibacterial, anticancer, antioxidant, antiviral, anti-inflammatory, antidiabetic, and excellent wound healing activity. On the other hand, SeNPs have also shown promising application in sensing of inorganic toxic metals, electrochemistry, agro-industries, aqua-cultures, and in fabrication of solar panels. Additionally, SeNPs capability to enhance the efficacy of traditional antibiotics and act as effective agents against multidrug-resistant pathogens has shown their potential in addressing critical health challenges. Although, the SeNPs exhibit wide applicability, the potential toxicity of Se, particularly in its various oxidative states, necessitates careful assessment of the environmental and health impacts associated with their use. Therefore, understanding the balance between their beneficial properties and potential risks is crucial for its safe applications. This review focuses exclusively on SeNPs synthesized via eco-friendly process, excluding research utilizing other synthesis processes. Moreover, this review aims to offer an overview of the diverse applications, potential risks, stability requirement, and cytocompatibility requirement, and multifaceted opportunities associated with SeNPs. Ultimately, the review bridges a gap in knowledge by providing an updated details of multifaceted applications of SeNPs.
Collapse
Affiliation(s)
- Pooja V Nagime
- Faculty of Agro-Industry, Centre of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Vinay Kumar Pandey
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Charu Rajpal
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Kumar
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, Jadcherla, Hyderabad 509301, India
| | - Sudarshan Singh
- Office of Research Administration, Chaing Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chaing Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
de Morais EG, Silva MA, Quispe APV, Machado GGL, Prado DT, Benevenute PAN, Lima JDS, de Sousa GF, de Barros Vilas Boas EV, Guilherme LRG. Foliar Sprays of Multi-Nutrient Fertilizer Containing Selenium Produce Functional Tomato Fruits with Higher Shelf Life. PLANTS (BASEL, SWITZERLAND) 2024; 13:2288. [PMID: 39204724 PMCID: PMC11358990 DOI: 10.3390/plants13162288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is a nutrient whose daily intake is often below the recommended levels in people. Biofortification with Se is a method to increase this intake by raising the Se concentration in tomato fruits, an effect dependent on sources and modes of application. Additionally, Se application can promote the enhancement of other compounds in tomato fruits, altering their metabolism, which may increase the fruit's shelf life. This study aimed to determine how different strategies of applying a multi-nutrient fertilizer containing Se (SeMNF) can increase the Se content and other bioactive compounds and enhance the shelf life of tomato (Solanum lycopersicum L.) fruits. Different foliar fertilization strategies involving the use of SeMNF were evaluated in field trials conducted on commercial tomato crops. Indeterminate-growth tomatoes were used, and different Se doses and application strategies were tested. Harvesting was conducted in three phases according to fruit ripening. Each harvested fruit was assessed for the Se content, macro and micronutrients, total phenolic compounds, vitamin C, antioxidant activity, carotenoids, pH, total titratable acidity, and total soluble solids in tomato fruits. Doses of 15 g ha-1 of Se, split into three applications, increased the Se content in the fruits at 1 and 2 harvests. The application of SeMNF at Se doses above 10 g of Se ha-1 increased firmness, days of ripening, and the nutritional quality of the tomatoes (higher contents of carotenoids (+39%), lycopene (+33%), antioxidant activity (+16%), total phenolic compounds (+38%), and vitamin C (+14%) in a dose-dependent effect of the application strategy used. These results contributed to an increase in the shelf life of tomatoes, consequently reducing food waste.
Collapse
Affiliation(s)
- Everton Geraldo de Morais
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Maila Adriely Silva
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Anyela Pierina Vega Quispe
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Gilson Gustavo Lucinda Machado
- Department of Food Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil; (G.G.L.M.)
| | - Debora Teixeira Prado
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | | | - Jucelino de Sousa Lima
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Gustavo Ferreira de Sousa
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | | | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| |
Collapse
|
5
|
Dong J, Zhang H, Ai X, Dong Q, Shi X, Zhao X, Zhong C, Yu H. Improving chilling tolerance of peanut seedlings by enhancing antioxidant-modulated ROS scavenging ability, alleviating photosynthetic inhibition, and mobilizing nutrient absorption. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:532-543. [PMID: 38597809 DOI: 10.1111/plb.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Peanut production is threatened by climate change. Damage to seedlings from low temperatures in early spring can limit yield. Plant adaptations to chilling stress remain unclear in peanut seedlings. It is essential to understand how peanut acquires chilling tolerance. We evaluated effects of chilling stress on growth and recovery of peanut seedlings. We compared and analysed biological characteristics, antioxidants, photosynthesis, biochemical and physiological responses, and nutrient absorption at varying levels of chilling. Compared with chilling-sensitive FH18, the reduced impact of chilling stress on chilling-tolerant NH5 was associated with reduced ROS accumulation, higher ascorbate peroxidase activity and soluble sugar content, lower soluble protein content, and smaller reductions in nutrient content during stress. After removal of chilling stress, FH18 had significant accumulation of O2 •- and H2O2, which decreased photosynthesis, nutrient absorption, and transport. ROS-scavenging reduced damage from chilling stress, allowed remobilization of nutrients, improved chilling tolerance, and restored plant functioning after chilling stress removal. These findings provide a reference for targeted research on peanut seedling tolerance to chilling and lay the foundation for bioinformatics-based research on peanut chilling tolerance mechanisms.
Collapse
Affiliation(s)
- J Dong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - H Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Ai
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Q Dong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - C Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - H Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
de Sousa GF, Silva MA, de Carvalho MR, de Morais EG, Benevenute PAN, Van Opbergen GAZ, Van Opbergen GGAZ, Guilherme LRG. Foliar Selenium Application to Reduce the Induced-Drought Stress Effects in Coffee Seedlings: Induced Priming or Alleviation Effect? PLANTS (BASEL, SWITZERLAND) 2023; 12:3026. [PMID: 37687273 PMCID: PMC10490047 DOI: 10.3390/plants12173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to investigate the role of Se supply in improving osmotic stress tolerance in coffee seedlings while also evaluating the best timing for Se application. Five times of Se foliar application were assessed during induced osmotic stress with PEG-6000 using the day of imposing stress as a default, plus two control treatments: with osmotic stress and without Se, and without osmotic stress and Se. Results demonstrated that osmotic stress (OS) promoted mild stress in the coffee plants (ψw from -1.5MPa to -2.5 MPa). Control plants under stress showed seven and five times lower activity of the enzymes GR and SOD compared with the non-stressed ones, and OS was found to further induce starch degradation, which was potentialized by the Se foliar supply. The seedlings that received foliar Se application 8 days before the stress exhibited higher CAT, APX, and SOD than the absolute control (-OS-Se)-771.1%, 356.3%, and 266.5% higher, respectively. In conclusion, previous Se foliar spray is more effective than the Se supply after OS to overcome the adverse condition. On the other hand, the post-stress application seems to impose extra stress on the plants, leading them to reduce their water potential.
Collapse
Affiliation(s)
- Gustavo Ferreira de Sousa
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Maila Adriely Silva
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Everton Geraldo de Morais
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Pedro Antônio Namorato Benevenute
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Gustavo Avelar Zorgdrager Van Opbergen
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Luiz Roberto Guimarães Guilherme
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| |
Collapse
|
7
|
Silva MA, de Sousa GF, Van Opbergen GAZ, Van Opbergen GGAZ, Corguinha APB, Bueno JMM, Brunetto G, Leite JM, dos Santos AA, Lopes G, Guilherme LRG. Foliar Application of Selenium Associated with a Multi-Nutrient Fertilizer in Soybean: Yield, Grain Quality, and Critical Se Threshold. PLANTS (BASEL, SWITZERLAND) 2023; 12:2028. [PMID: 37653945 PMCID: PMC10221896 DOI: 10.3390/plants12102028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/13/2023]
Abstract
Selenium uptake and its content in soybean grains are affected by Se application methods. This study evaluated the impact of Se foliar application combined with a multi-nutrient fertilizer (MNF) on soybean, establishing a Se threshold to better understand the relationship between Se content in grains and yield of two genotypes (58I60 Lança and M5917). Two trials were conducted in a 4 × 2 factorial design: four Se rates (0, 10, 40, 80 g Se ha-1) and two methods of foliar Se application (Se combined or not with MNF). Foliar fertilizers were applied twice, at phenological stages of beginning of pod development and grain filling. Grain yield increased with the application of MNF, yet Se rates increased Se contents linearly up to 80 g Se ha-1, regardless of the use of MNF. Lança and M5917 genotypes had grain Se critical thresholds of 1.0 and 3.0 mg kg-1, respectively. The application of Se favored higher contents of K, P, and S in grains of genotype Lança and higher contents of Mn and Fe in grains of genotype M5917. Our findings highlight the importance of addressing different Se fertilization strategies as well as genotypic variations when assessing the effects of Se on soybean yield and grain quality.
Collapse
Affiliation(s)
- Maila Adriely Silva
- Soil Science Department, Federal University of Lavras, Lavras 37200-900, Brazil; (M.A.S.); (G.F.d.S.); (G.A.Z.V.O.); (G.G.A.Z.V.O.); (A.P.B.C.); (G.L.)
| | - Gustavo Ferreira de Sousa
- Soil Science Department, Federal University of Lavras, Lavras 37200-900, Brazil; (M.A.S.); (G.F.d.S.); (G.A.Z.V.O.); (G.G.A.Z.V.O.); (A.P.B.C.); (G.L.)
| | | | | | - Ana Paula Branco Corguinha
- Soil Science Department, Federal University of Lavras, Lavras 37200-900, Brazil; (M.A.S.); (G.F.d.S.); (G.A.Z.V.O.); (G.G.A.Z.V.O.); (A.P.B.C.); (G.L.)
| | - Jean Michel Moura Bueno
- Soil Science Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (J.M.M.B.); (G.B.)
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (J.M.M.B.); (G.B.)
| | | | | | - Guilherme Lopes
- Soil Science Department, Federal University of Lavras, Lavras 37200-900, Brazil; (M.A.S.); (G.F.d.S.); (G.A.Z.V.O.); (G.G.A.Z.V.O.); (A.P.B.C.); (G.L.)
| | - Luiz Roberto Guimaraes Guilherme
- Soil Science Department, Federal University of Lavras, Lavras 37200-900, Brazil; (M.A.S.); (G.F.d.S.); (G.A.Z.V.O.); (G.G.A.Z.V.O.); (A.P.B.C.); (G.L.)
| |
Collapse
|
8
|
Amagova Z, Matsadze V, Kavarnakaeva Z, Golubkina N, Antoshkina M, Sękara A, Tallarita A, Caruso G. Joint Cultivation of Allium ursinum and Armoracia rusticana under Foliar Sodium Selenate Supply. PLANTS (BASEL, SWITZERLAND) 2022; 11:2778. [PMID: 36297801 PMCID: PMC9607992 DOI: 10.3390/plants11202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite the high value of ramson (Allium ursinum) in medicine and nutrition, it is not cultivated in open fields due to the need for shading as well as weeding during the early crop stages. Research was carried out in an open field with the aim to improve A. ursinum growth, through its intercropping with Armoracia rusticana (horseradish). In the latter context, with and without sodium selenate application, ramson and horseradish showed reciprocal growth stimulation, as ramson biomass increased by 1.28 times and horseradish root biomass by 1.7 times. The biofortification level of horseradish roots increased from 5.9 to 9.6 times due to joint plant growth under selenium (Se) supply. The opposite phenomenon was recorded for ramson leaves, as the biofortification level decreased from 11.7 in the case of Se supplementation to 6.7 in plants supplied with sodium selenate when jointly cultivated with horseradish. Among the tested antioxidants, the highest increase due to joint cultivation and/or Se supply was recorded for ascorbic acid by 1.69 times in ramson leaves and 1.48 and 1.37 times in horseradish roots and leaves, respectively. All treatments significantly increased the total antioxidant activity (AOA) of horseradish leaves (by 1.33-1.49 times) but not roots. Comparison of the results obtained in field conditions with those obtained earlier for the Se biofortification of ramson in the natural habitat (forest) revealed significantly higher levels of the plant's antioxidant status under environmental stress (field) and a decrease in the correspondent differences as a consequence of Se biofortification. The estimation of allelopathic beneficial interaction between ramson and horseradish implies the efficiency of ramson growth and production of functional food with high levels of Se (Se-ramson leaves and Se-horseradish roots).
Collapse
Affiliation(s)
- Zarema Amagova
- Chechen Scientific Institute of Agriculture, Lilovaya 1, 366021 Grozny, Russia
| | - Visita Matsadze
- Chechen Scientific Institute of Agriculture, Lilovaya 1, 366021 Grozny, Russia
| | - Zulfia Kavarnakaeva
- Chechen Scientific Institute of Agriculture, Lilovaya 1, 366021 Grozny, Russia
| | - Nadezhda Golubkina
- Federal Scientific Center of Vegetable Production, Selectsionnaya 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - Marina Antoshkina
- Federal Scientific Center of Vegetable Production, Selectsionnaya 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Naples, 80055 Portici, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, 80055 Portici, Italy
| |
Collapse
|