1
|
Song J, Pi B, Dai J, Nie Z, Yu G, Du W. Effects of humic acid on the growth and cadmium accumulation of maize ( Zea mays L.) seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:888-895. [PMID: 39838591 DOI: 10.1080/15226514.2025.2455483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The increasing prevalence of cadmium (Cd)-contaminated agricultural soils threatens the safe production of maize (Zea mays L.). To decrease the Cd accumulation in maize, a pot experiment was conducted to study the effects of humic acid on the growth and Cd uptake of maize seedlings. Cd treatment led to a decrease in biomass and photosynthetic pigment content in maize seedlings, as well as an increase in the activities of antioxidant enzymes. Under Cd stress, the application of humic acid resulted in an increase in biomass, photosynthetic pigment content, and antioxidant enzyme activity in maize seedlings. Additionally, the application of humic acid led to a decrease in root Cd content and an increase in shoot Cd content and translocation factor in maize seedlings under Cd stress. Compared to Cd treatment, humic acid reduced root Cd content by 14.63% and increased shoot Cd content by 12.81%. Furthermore, the carotenoid content, translocation factor, chlorophyll a + b content, and chlorophyll a content were strongly associated with shoot Cd content under Cd stress. Therefore, the application of humic acid can enhance growth, inhibit Cd uptake in roots, and promote Cd translocation from roots to shoots of maize seedlings under Cd stress.
Collapse
Affiliation(s)
- Jun Song
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Boyi Pi
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jingtong Dai
- College of Life Science, Sichuan University, Chengdu, China
| | - Zhi Nie
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guirong Yu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenping Du
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
2
|
Yang Q, Yu H, Yang C, Zhao Z, Ju Z, Wang J, Bai Z. Enhanced phytoremediation of cadmium-contaminated soil using chelating agents and plant growth regulators: effect and mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240672. [PMID: 39323552 PMCID: PMC11421895 DOI: 10.1098/rsos.240672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The heavy metal cadmium (Cd) is a major threat to food safety and human health. Phytoremediation is the most widely used remediation technology, and how to improve the remediation efficiency of phytoremediation has become a key issue. In this study, we constructed an intensive phytoremediation technology for remediation of Cd-contaminated soil with biodegradable chelating agent and plant growth regulator combined with maize and investigated the mechanism of this technology. The results showed that the best remediation effect was achieved in the treatment with 10-6 mol l-1 gibberellic acid (GA3) and 6 mmol kg-1 aspartate diethoxysuccinic acid (AES) combined with maize. In this treatment, the total biomass and extraction efficiency of maize were 3.6 and 8.67 times higher than those of the control, respectively, and the antioxidant enzyme activities of maize were also increased. The soil was enriched with dominant bacterial genera that promote plant growth and metabolism and tolerance to heavy metal stress, which in turn promoted maize growth and Cd accumulation. Structural equation modelling results indicated a large effect of plant Cd concentration and plant antioxidant enzyme activity on plant Cd extraction. The enhanced phytoremediation technology showed good potential for safe use of Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiao Yang
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Hao Yu
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu030801, People’s Republic of China
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhengshan Ju
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| |
Collapse
|
3
|
Wang J, Lu Y, Xing S, Yang J, Liu L, Huang K, Liang D, Xia H, Zhang X, Lv X, Lin L. Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1447451. [PMID: 39239199 PMCID: PMC11374602 DOI: 10.3389/fpls.2024.1447451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Introduction Exogenous melatonin (MT) can promote horticultural crops growth under stress conditions. Methods In this study, the effects of exogenous MT on the accumulation of selenium (Se) in grape were studied under Se stress. Results and discussion Under Se stress, exogenous MT increased the biomass, content of photosynthetic pigments and antioxidant enzyme activity of grapevines. Compared with Se treatment, MT increased the root biomass, shoot biomass, chlorophyll a content, chlorophyll b content, carotenoids, superoxide dismutase activity, and peroxidase activity by 18.11%, 7.71%, 25.70%, 25.00%, 25.93%, 5.73%, and 9.41%, respectively. Additionally, MT increased the contents of gibberellin, auxin, and MT in grapevines under Se stress, while it decreased the content of abscisic acid. MT increased the contents of total Se, organic Se and inorganic Se in grapevines. Compared with Se treatment, MT increased the contents of total Se in the roots and shoots by 48.82% and 135.66%, respectively. A transcriptome sequencing analysis revealed that MT primarily regulated the cellular, metabolic, and bioregulatory processes of grapevine under Se stress, and the differentially expressed genes (DEGs) were primarily enriched in pathways, such as aminoacyl-tRNA biosynthesis, spliceosome, and flavonoid biosynthesis. These involved nine DEGs and nine metabolic pathways in total. Moreover, a field experiment showed that MT increased the content of Se in grapes and improved their quality. Therefore, MT can alleviate the stress of Se in grapevines and promote their growth and the accumulation of Se.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Xing
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jinman Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Liu
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Kewen Huang
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Wang J, Xiao Y, Zhang D, Dai Z, Huang K, Wang X, Lv X, Lin L. Effects of tea infusion on selenium uptake in grapevine. BMC PLANT BIOLOGY 2024; 24:656. [PMID: 38987701 PMCID: PMC11234665 DOI: 10.1186/s12870-024-05379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Increased selenium (Se) content in fruits can supply Se in human body, but the effects of teas on the Se uptake in fruit trees are unknown. The effects of infusions of four teas (green, black, dark, and white) on the Se uptake of grapevine were studied to promote the Se uptake in fruit trees in this study. However, only black tea infusion increased the biomass, photosynthetic pigment content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and soluble protein content of grapevine. Except for white tea infusion, other tea infusions also increased the catalase (CAT) activity of grapevine. Furthermore, the tea infusions increased the activities of adenosine triphosphate sulfurase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and decreased the activities of serine acetyltransferase (SAT) and selenocysteine methyltransferase (SMT). Only the dark and white tea infusions increased the shoot total Se content by 86.53% and 23.32%, respectively (compared with the control), and also increased the shoot inorganic Se content and shoot organic Se content. Notably, four tea infusions decreased the organic Se proportion and increased the inorganic Se proportion in grapevine. Correlation and grey relational analyses showed that the root total Se content, ATPS activity, and ARP activity were closely associated with the shoot total Se content. The principal component and cluster analyses also showed that the ATPS activity, APR activity, root total Se content, and shoot total Se content were classified into one category. These findings show that black tea infusion can promote grapevine growth, while dark and white tea infusions can promote the Se uptake in grapevine.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunying Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dilian Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhen Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kewen Huang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Wang J, Liu L, Zhang H, Zhang D, Dai Z, Luo X, Zhang X, Xia H, Liang D, Lv X, Lin L. Exogenous indole-3-acetic acid promotes the plant growth and accumulation of selenium in grapevine under selenium stress. BMC PLANT BIOLOGY 2024; 24:426. [PMID: 38769488 PMCID: PMC11103883 DOI: 10.1186/s12870-024-05105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
To alleviate the selenium (Se) stress in fruit trees and improve its accumulation, the effects of exogenous indole-3-acetic acid (IAA) on the growth and Se accumulation of grapevine under Se stress were studied. The application of exogenous IAA increased the biomass of grapevine, and the concentration of exogenous IAA had a regression relationship with the biomass. The root and shoot biomass were the maximum at 60 mg L- 1 IAA, increasing by 15.61% and 23.95%, respectively, compared with the control. Exogenous IAA also increased the photosynthetic pigments and the activities of superoxide dismutase and peroxidase in grapevine. Moreover, exogenous IAA increased the contents of total Se, organic Se, and inorganic Se, and the concentration of exogenous IAA had a regression relationship with the total Se content. The highest contents of root total Se and shoot total Se were accumulated at 90 mg L- 1 IAA, increasing by 29.94% and 55.77% respectively,. In addition, the correlation and path analyses revealed that the carotenoid content and root total Se content were closely associated with the shoot total Se content. Therefore, the application of exogenous IAA can alleviate the stress of Se to grape and promote its uptake and the most effective amount for the uptake of Se is 90 mg L- 1 IAA.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Liu
- Institute of Horticulture Research, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Haiyan Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dilian Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Shen C, Li Y, Lu G, Meng Q. Electrodialysis treatment of rhamnolipids hydrolysate and its waste water for use as water-soluble fertilizer. BIORESOURCE TECHNOLOGY 2024; 393:130080. [PMID: 37993068 DOI: 10.1016/j.biortech.2023.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Rhamnolipids can serve as a precursor for rhamnose production, but using ion exchange resin in purifying rhamnolipids hydrolysate results in excessive high-salinity wastewater, making the process environmentally and economically unfeasible. This study introduced electrodialysis technology as an alternative for purifying rhamnolipids hydrolysate, significantly reducing wastewater to less than 5 % compared to the resin method. To achieve zero wastewater discharge, the electrodialysis-treated wastewater was repurposed into a water-soluble fertilizer containing 7.1 g/L of rhamnolipids, 11.4 g/L of fatty acid, 2.4 g/L of amino acid, and 8.2 g/L of potassium. Unlike traditional fertilizers, the nutritional components with rhamnolipids showed remarkable potential in enhancing tomato plant growth, flowering, and fruit quality. Taken together, the electrodialysis treatment of rhamnolipids hydrolysate largely reduced the water volume, the economic cost, and took a full use of the final wastewater as efficient water-soluble fertilizers, making it applicable for large-scale rhamnose production.
Collapse
Affiliation(s)
- Chong Shen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yizeng Li
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qin Meng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Li Z, Li X, Dai Z, Zhang D, Wang X, Tang Y, Lin L. Effect of abscisic acid on selenium uptake and growth of Cyphomandra betacea Sendt. ( Solanum betaceum Cav.) seedlings under selenium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:894-902. [PMID: 37941161 DOI: 10.1080/15226514.2023.2277800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Improvement of selenium (Se) uptake in fruit tree can improve the source of food Se for humans. In this study, the effect of various abscisic acid (ABA) concentrations on the Se uptake in Cyphomandra betacea Sendt. (Solanum betaceum Cav.) seedlings was studied under Se stress. Only the concentration of 20 μmol/L ABA promoted the growth of C. betacea seedlings by increasing the biomass and regulating the resistance physiology under Se stress. ABA also increased the Se content in C. betacea seedlings under Se stress. The concentration of ABA at 20 μmol/L got the maximum root Se and shoot Se contents, which increased by 76.64% and 55.83%, respectively, compared with the control. Correlation and grey relational analyses showed that the peroxidase activity and proline content had the first two closest relationship with the shoot Se content. This study shows that ABA can promote the Se uptake in C. betacea under Se stress, and the concentration of 20 μmol/L ABA is the optimum for Se uptake and growth of C. betacea.
Collapse
Affiliation(s)
- Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiufen Li
- Department of Plant and Environmental Sciences, NM State University, Las Cruces, NM, USA
| | - Zhen Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dilian Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Li Z, Xiao Y, Zhou K, Jin X, Li W, Li W, Zhang L, Wang J, Hu R, Lin L. Water extract of Fagopyrum dibotrys (D. Don) Hara straw increases selenium accumulation in peach seedlings under selenium-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:569-578. [PMID: 37684742 DOI: 10.1080/15226514.2023.2255287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.
Collapse
Affiliation(s)
- Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunying Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kexuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xin Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wanzhi Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rongping Hu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|