1
|
Lin CH, Lee BY, Ou YT, Chiang MJ, Chen CY. Salicylic Acid, Hypersensitive Response and RBOHD-Mediated Hydrogen Peroxide Accumulation Play Key Roles in Black Rot Resistance of Crucifers. PLANT, CELL & ENVIRONMENT 2025; 48:4286-4300. [PMID: 39945095 DOI: 10.1111/pce.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 05/06/2025]
Abstract
Black rot caused by hemibiotrophic Xanthomonas campestris pv. campestris (Xcc) is a great problem in crucifer crop production. Various host responses are activated upon Xcc attack; however, their roles in black rot resistance remain ambiguous. In this study, a highly black rot resistance of host plants was achieved by applying a field-screened systemic resistance-eliciting Bacillus velezensis strain 37-1. The contributions of strain 37-1-altered host responses to Xcc resistance were then investigated in Arabidopsis. Hypersensitive response and hydrogen peroxide accumulation were demonstrated beneficial for Xcc infection by using nrg1 and rbohd mutants, histochemical staining against host cell death and reactive oxygen species, detection of antioxidant enzyme activity and RT-qPCR assay. By contrast, salicylic acid was proven essential for black rot suppression by using NahG transformant, mutants impaired in defence hormone synthesis and signalling pathway, and RT-qPCR assay. Additionally, both isochorismate synthase and phenylalanine ammonia-lyase pathways for salicylic acid biosynthesis were found to be involved in resistance to Xcc. These findings improve the knowledge of host defence responses crucial for fighting off hemibiotrophic Xcc.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Bo-Yi Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yun-Ting Ou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Min-Jui Chiang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Dobón-Suárez A, Gutiérrez-Pozo M, Serna-Escolano V, Giménez MJ, Valero D, Serrano M, García-Pastor ME, Zapata PJ. Antioxidant metabolism insights into ripening and senescence delay of green pepper fruit through the salicylic acid preharvest treatment. FRONTIERS IN PLANT SCIENCE 2025; 16:1475068. [PMID: 40177016 PMCID: PMC11961999 DOI: 10.3389/fpls.2025.1475068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
Introduction The systematic investigation of the biochemical and molecular bases of salicylic acid (SA) in the postharvest physiological process of green pepper fruit remains unclear. Methods Accordingly, this study aims to analyze the effects of 0.5 mM-SA preharvest treatments, applied by foliar spraying or irrigation, on the ripening and senescence of green pepper fruit for 28 days of storage at 7 °C. Results The study revealed that the preharvest application of SA, either by foliar spraying or irrigation, significantly delayed losses of weight, firmness and color during postharvest. Additionally, both treatments increased the total soluble solids and total acidity content, which lead to a significantly reduced ripening index after storage. These results were evidenced by a slowing down of the ripening and senescence processes, accompanied by the stimulation of the antioxidant enzymes in those SA-treated green pepper fruits. Furthermore, a significant increase in chlorophylls, phenolics, ascorbic acid and dehydroascorbic acid content was observed. The SA treatments also enhanced the total antioxidant activity, in both hydrophilic and lipophilic phases. These positive effects were mediated by the upregulation of the relative response of the CaAPX, CaPOD, CaPAL, CaDHAR2 genes at harvest. Discussion These findings reinforce the existing knowledge gap regarding the impact of foliar spraying or irrigation SA on the intricate interplay between metabolites and genes related to the antioxidant system in regulating the bell pepper fruit ripening and senescence. The impact of both applications exhibited comparable results; however, the irrigation was identified as the most advantageous due to its ease applicability and cost effectiveness in comparison.
Collapse
Affiliation(s)
- Alicia Dobón-Suárez
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María Gutiérrez-Pozo
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Vicente Serna-Escolano
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María J. Giménez
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Daniel Valero
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María E. García-Pastor
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Pedro J. Zapata
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| |
Collapse
|
3
|
Dai H, Hu L, Wang J, Yue Z, Wang J, Chen T, Li J, Dou T, Yu J, Liu Z. Constructing a Novel Disease Resistance Mechanism Model for Cruciferous Crops: An Example From Black Rot. MOLECULAR PLANT PATHOLOGY 2025; 26:e70060. [PMID: 39924905 PMCID: PMC11808048 DOI: 10.1111/mpp.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Cruciferous crops are essential components of global agricultural production due to their rich nutritional value and extensive economic benefits. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) has caused significant losses to cruciferous crops. Therefore, studying the resistance mechanisms of cruciferous crops to improve the disease resistance of cruciferous crops is of significant practical importance. This review introduces the biological characteristics and epidemiological patterns of the Xcc. The main resistance mechanisms including the physical barrier functions, immune responses, systemic resistance, regulation of photosynthesis, antimicrobial effects of secondary metabolites, production and regulation of reactive oxygen species, and the signalling pathways of salicylic acid, jasmonic acid and ethylene of cruciferous crops to Xcc are also summarised. Comprehensive knowledge of these resistance mechanisms will provide theoretical support for enhancing disease resistance in crops.
Collapse
Affiliation(s)
- Haojie Dai
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Linli Hu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jie Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zhibin Yue
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jue Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tongyan Chen
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jinbao Li
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tingting Dou
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jihua Yu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zeci Liu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
4
|
Zhou C, Xu L, Zuo R, Bai Z, Fu T, Zeng L, Qin L, Zhang X, Shen C, Liu F, Gao F, Xie M, Tong C, Ren L, Huang J, Liu L, Liu S. Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Brassica napus Against Xanthomonas campestris. Int J Mol Sci 2025; 26:367. [PMID: 39796224 PMCID: PMC11721368 DOI: 10.3390/ijms26010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Rapeseed (Brassica napus L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by Xanthomonas campestris pv. campestris (Xcc). Despite the identification of several quantitative trait loci (QTLs) associated with resistance to black rot in Brassica crops, the underlying molecular mechanisms remain largely unexplored. In this study, we investigated Xcc-induced transcriptomic and metabolic changes in the leaves of two rapeseed varieties: Westar (susceptible) and ZS5 (resistant). Our findings indicated that Xcc infection elicited more pronounced overall transcriptomic and metabolic changes in Westar compared to ZS5. Transcriptomic analyses revealed that the phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, tryptophan metabolism, and phenylalanine metabolism were enriched in both varieties. Notably, photosynthesis was down-regulated in Westar after infection, whereas this down-regulation occurred at a later stage in ZS5. Integrated analyses of transcriptome and metabolome revealed that the tryptophan metabolism pathway was enriched in both varieties. Indolic glucosinolates and indole-3-acetic acid (IAA) are two metabolites derived from tryptophan. The expression of genes involved in the indolic glucosinolate pathway and the levels of indolic glucosinolates were significantly elevated in both varieties post-infection. Additionally, exogenous application of IAA promoted the development of black rot, whereas the use of an IAA synthesis inhibitor attenuated black rot development in both resistant and susceptible rapeseed varieties. These findings provide valuable molecular insights into the interactions between rapeseed and Xcc, facilitating the advancement of black rot resistance breeding in Brassica crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lijiang Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (C.Z.)
| | | |
Collapse
|
5
|
Man KY, Chan CO, Wan SW, Kwok KWH, Capozzi F, Dong NP, Wong KH, Mok DKW. Untargeted foodomics for authenticating the organic farming of water spinach (Ipomoea aquatica). Food Chem 2024; 453:139545. [PMID: 38772304 DOI: 10.1016/j.foodchem.2024.139545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
This study aimed to conduct a comprehensive analysis of the primary and secondary metabolites of water spinach (Ipomoea aquatica) using hydrophilic interaction liquid chromatography coupled with Orbitrap high-resolution mass spectrometry (HILIC-Orbitrap-HRMS). Certified samples from two cultivars, Green stem water spinach (G) and White stem water spinach (W) cultivated using organic and conventional farming methods, were collected from the Hong Kong market. Multivariate analysis was used to differentiate water spinach of different cultivars and farming methods. We identified 12 metabolites to distinguish between G and W, 26 metabolites to identify G from organic farming and 8 metabolites to identify W from organic farming. Then, two metabolites, isorhamnetin and jasmonic acid, have been proposed to serve as biomarkers for organic farming (in both G and W). Our foodomics findings provide useful tools for improving the crop performance of water spinach under abiotic/biotic stressesand authentication of organic produce.
Collapse
Affiliation(s)
- Ka-Yi Man
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-On Chan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Siu-Wai Wan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kevin Wing Hin Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
| | - Nai-Ping Dong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China.
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Lei J, Zhang W, Yu F, Ni M, Liu Z, Wang C, Li J, Song J, Wang S. Integrated Analysis of Transcriptome and Metabolome Reveals Differential Responses to Alternaria brassicicola Infection in Cabbage ( Brassica oleracea var. capitata). Genes (Basel) 2024; 15:545. [PMID: 38790174 PMCID: PMC11121261 DOI: 10.3390/genes15050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to investigate the response to Ab infection in two cabbage (Brassica oleracea var. capitata) genotypes, Bo257 (resistant to Ab) and Bo190 (susceptible to Ab). A total of 1100 and 7490 differentially expressed genes were identified in Bo257 (R_mock vs. R_Ab) and Bo190 (S_mock vs. S_Ab), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that "metabolic pathways", "biosynthesis of secondary metabolites", and "glucosinolate biosynthesis" were the top three enriched KEGG pathways in Bo257, while "metabolic pathways", "biosynthesis of secondary metabolites", and "carbon metabolism" were the top three enriched KEGG pathways in Bo190. Further analysis showed that genes involved in extracellular reactive oxygen species (ROS) production, jasmonic acid signaling pathway, and indolic glucosinolate biosynthesis pathway were differentially expressed in response to Ab infection. Notably, when infected with Ab, genes involved in extracellular ROS production were largely unchanged in Bo257, whereas most of these genes were upregulated in Bo190. Metabolic profiling revealed 24 and 56 differentially accumulated metabolites in Bo257 and Bo190, respectively, with the majority being primary metabolites. Further analysis revealed that dramatic accumulation of succinate was observed in Bo257 and Bo190, which may provide energy for resistance responses against Ab infection via the tricarboxylic acid cycle pathway. Collectively, this study provides comprehensive insights into the Ab-cabbage interactions and helps uncover targets for breeding Ab-resistant varieties in cabbage.
Collapse
Affiliation(s)
- Jinzhou Lei
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.); (Z.L.)
| | - Wei Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (W.Z.); (F.Y.); (M.N.); (J.L.)
| | - Fangwei Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (W.Z.); (F.Y.); (M.N.); (J.L.)
| | - Meng Ni
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (W.Z.); (F.Y.); (M.N.); (J.L.)
| | - Zhigang Liu
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.); (Z.L.)
| | - Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China;
| | - Jianbin Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (W.Z.); (F.Y.); (M.N.); (J.L.)
| | - Jianghua Song
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.); (Z.L.)
| | - Shenyun Wang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.); (Z.L.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (W.Z.); (F.Y.); (M.N.); (J.L.)
| |
Collapse
|
7
|
Cheng T, Zhou X, Lin J, Zhou X, Wang H, Chen T. Transcriptomic and Metabolomic Analyses Reveal the Response Mechanism of Ophiopogon japonicus to Waterlogging Stress. BIOLOGY 2024; 13:197. [PMID: 38534466 DOI: 10.3390/biology13030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Ophiopogon japonicus, a plant that thrives in river alluvial dams, often faces waterlogging stress due to sustained rainfall and flood seasons, which significantly impacts its growth and development. Currently, the mechanisms of waterlogging tolerance in Ophiopogon japonicus are still unclear. This study analyzed the transcriptome and metabolome data for Ophiopogon japonicus in the Sichuan region (referred to as CMD) under varying degrees of waterlogging stress: mild, moderate, and severe. The results indicate that the group exposed to flooding stress exhibited a higher number of differentially expressed genes (DEGs) compared to the control group. Notably, most DEGs were downregulated and primarily enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction pathways. A total of 5151 differentially accumulated metabolites (DAMs) were identified, with significantly upregulated DAMs annotated to two clusters, namely flavonoids such as apiin, pelargonin, and others. Furthermore, our study revealed significant upregulation in the expression of C2H2 (C2H2 zinc finger proteins) and AP2/ERF-ERF (the subfamily ERF proteins of APETALA2/ethylene-responsive element binding factors) transcription factors in CMD under flooding stress, suggesting their critical roles in enabling CMD to adapt to these conditions. In conclusion, this research provides insights into the intricate molecular mechanisms underlying CMD's response to flooding stress and reports valuable genetic data for the development of transgenic plants with improved waterlogging tolerance.
Collapse
Affiliation(s)
- Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Xia Zhou
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Juan Lin
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Xianjian Zhou
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hongsu Wang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu 610041, China
| |
Collapse
|
8
|
Gao P, Qi Y, Li L, Yang S, Guo J, Liu J, Wei H, Huang F, Yu L. Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1334996. [PMID: 38444534 PMCID: PMC10912172 DOI: 10.3389/fpls.2024.1334996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Soft rot of konjac (Amorphophallus spp.) is a devastating disease caused by the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) with serious adverse effects on plantation development, corm quality and crop yield due to the current lack of effective control measures. The main objective of the present study was to elucidate the mechanisms underlying plant resistance to soft rot disease. A combination of transcriptomic and metabolomic analyses demonstrated significant enrichment of differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) associated with plant hormones, phenylpropanoid biosynthesis and, in particular, alkaloid metabolism, in Amorphophallus muelleri following Pcc infection compared with A. konjac, these data implicate alkaloid metabolism as the dominant mechanism underlying disease resistance of A. muelleri. Quantitative real-time polymerase chain reaction analysis further revealed involvement of PAL, CYP73A16, CCOAOMT1, RBOHD and CDPK20 genes in the response of konjac to Pcc. Analysis of the bacteriostatic activities of total alkaloid from A. muelleri validated the assumption that alkaloid metabolism positively regulates disease resistance of konjac. Our collective results provide a foundation for further research on the resistance mechanisms of konjac against soft rot disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
9
|
Vega-Álvarez C, Soengas P, Roitsch T, Abilleira R, Velasco P, Francisco M. Unveiling plant defense arsenal: metabolic strategies in Brassica oleracea during black rot disease. HORTICULTURE RESEARCH 2023; 10:uhad204. [PMID: 38023479 PMCID: PMC10681004 DOI: 10.1093/hr/uhad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Alterations in plant metabolism play a key role in the complex plant-pathogen interactions. However, there is still a lack of knowledge about the connection between changes in primary and specialized metabolism and the plant defense against diseases that impact crops. Thus, we aim to study the metabolic reprograming in Brassica oleracea plants upon infection by Xanthomonas campestris pv. campestris (Xcc). To accomplish this, we utilized a combination of untargeted and targeted metabolomics, through UPLC-Q-TOF-MS/MS and 1H-NMR, in two crop lines differing in resistance that were evaluated at two- and four-week intervals following inoculation (T1 and T2, respectively). Besides, to depict the physiological status of the plant during infection, enzymatic activities related to the carbohydrate pathway and oxidative stress were studied. Our results revealed different temporal dynamics in the responses of the susceptible vs. resistant crops lines. Resistant B. oleracea line suppresses carbohydrate metabolism contributing to limit nutrient supplies to the bacterium and prioritizes the induction of defensive compounds such as indolic glucosinolates, salicylic acid, phenylpropanoids and phytoalexins precursors at early infection stages. In contrast, the susceptible line invests in carbohydrate metabolism, including enzymatic activities related to the hexoses turnover, and activates defense signaling related to reactive oxygen species. Thus, each line triggers a different metabolic strategy that will affect how the plant overcomes the disease in terms of resistance and growth. This work provides first insights of a fine-tuned metabolic regulation during Xcc infection in B. oleracea that will contribute to develop new strategies for plant disease management.
Collapse
Affiliation(s)
- Carmen Vega-Álvarez
- Group of Genetics, Breeding and Biochemistry of Brassicas,Misión Biológica de Galicia (CSIC), ES-36143, Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas,Misión Biológica de Galicia (CSIC), ES-36143, Pontevedra, Spain
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, DK-2630, Taastrup, Denmark
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas,Misión Biológica de Galicia (CSIC), ES-36143, Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas,Misión Biológica de Galicia (CSIC), ES-36143, Pontevedra, Spain
| | - Marta Francisco
- Group of Genetics, Breeding and Biochemistry of Brassicas,Misión Biológica de Galicia (CSIC), ES-36143, Pontevedra, Spain
| |
Collapse
|