1
|
Zhang D, Li J, Chen X, Zhang S, Wu B, Fan J. A new combination approach to extracellular production of 5-aminolevulinic acid for purification and application in alleviating cadmium-induced oxidative stress in maize. Protein Expr Purif 2025; 232:106736. [PMID: 40349745 DOI: 10.1016/j.pep.2025.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
5-Aminolevulinic acid (ALA) is widely applied in agriculture, animal husbandry, medicine, and often manufactured in Escherichia coli for overexpressing ALA synthase (ALAS) from α-proteobacteria. For enhancing extracellular ALA production, several approaches have been exploited. Here, we developed and identified a new combination strategy to increase ALA production in E. coli, including selection of the negatively-charged peptide tag as a C-terminal fusion partner for increasing soluble production of the ALAS codon variant from Rhodobacter sphaeroides, mutation of certain residues to increase the ALAS variant activity, optimization of the signal sequences to facilitate ALA secretion, down-regulation of the hemB to inhibit ALA transformation in one plasmid expression system, and supply of 4 mM dithiothreitol to the culture to increase cells tolerant to the oxidative stress. Under the specified cultural conditions, ALA yield was up to 3.2 g/L in flash flasks. Compared with the added cadmium-induced stress, simultaneous supply of purified ALA improved maize seedlings growth, decreased contents of malondialdehyde and hydrogen peroxide, and increased peroxidase activity, contents of chlorophylls and proline.
Collapse
Affiliation(s)
- Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jinjing Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Baokang Wu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
2
|
da Silva VHC, de Lima RF, Mayer JLS, Arruda MAZ. Feasibility of using silica (Na 2SiO 3 and SiO 2NPs) to mitigate mercury in transgenic soybeans grown in contaminated soils and respective effects on nutrient homeostasis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7600-7619. [PMID: 40045078 DOI: 10.1007/s11356-025-36179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
This study aimed to investigate the potential of Silicon (SiO2NPs and Na2SiO3) to mitigate Hg absorption, accumulation, and toxicity in transgenic soybean plants. By analyzing Hg speciation, total Hg content, physiological characteristics, anatomical structures, and the homeostasis of macro (P, S, Ca, K, and Mg) and micro (Cu, Fe, Mn, Zn) nutrients, the impact of Si against Hg-induced stress was assessed. Plants were cultivated under six treatments: water, SiO2NPs, Na2SiO3, Na2SiO3 + HgCl2, SiO2NPs + HgCl2, and HgCl2. The addition of silicon to the soil, both in the form of nanoparticles and in its soluble form, did not negatively impact plant development. SiO2 NPs reduced Hg concentration in roots by 17% (RR) and 29% (INTACTA) and Na2SiO3 by 15% and 37%. In leaves, Hg reductions were 25% with SiO2NPs and 22% with Na2SiO3 for RR variety, while INTACTA showed decreases of 14% and 34%. Only Hg(II) species were found, indicating no Hg methylation in soil or plants. PCA revealed that Hg, alone or with Si, altered nutrient absorption. Morphological analyses showed that SiO2NPs and Na2SiO3 reduced Hg toxicity at the cellular level, highlighting their potential to mitigate heavy metal contamination in crops.
Collapse
Affiliation(s)
- Vinnícius H C da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rodrigo F de Lima
- Laboratory of Plant Anatomy, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| | - Juliana L S Mayer
- Laboratory of Plant Anatomy, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
3
|
Chen M, Wang X, Zhou X, Huang B, Zhao Y, Liu H, He Q. Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms. BMC PLANT BIOLOGY 2024; 24:1260. [PMID: 39725878 DOI: 10.1186/s12870-024-05975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains. The comprehensive evaluation indicates that the ZJWZ strain holds potential as a preferred parental material for future resistance breeding. Furthermore, PAL gene expression was strongly positively correlated with flavonoid and phenol contents, highlighting its role in the stress response through the phenylpropanoid-flavonoid pathway. This study contributes to the standardization of the production and breeding of superior strains of T. hemsleyanum. It also lays the foundation for investigating how plants react to environmental stressors.
Collapse
Affiliation(s)
- Minmin Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Hangzhou, 572025, China
| | - Xiaoqun Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiawen Zhou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baiyu Huang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haiying Liu
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Shahzad M, Peng D, Khan A, Ayyaz A, Askri SMH, Naz S, Huang B, Zhang G. Sufficient manganese supply is necessary for OsNramp5 knockout rice plants to ensure normal growth and less Cd uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117386. [PMID: 39579447 DOI: 10.1016/j.ecoenv.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The development of crop cultivars with less Cd uptake in roots and accumulation in shoots is a most efficient and environment-friendly approach to deal with soil Cd contamination. Recently repression of Nramp5 expression or its knockout is commonly recognized to be efficient for reducing Cd accumulation in plants, but such mutant plants suffer from manganese deficiency. In this study, we assessed the efficacy of exogenous Mn addition in mitigating Cd stress in a japonica rice cultivar Xidao 1 (Wild Type, WT) and its OsNramp5 knockout mutant. Exposure to Cd stress resulted in notable low photosynthetic rate, growth inhibition, and high Cd accumulation in rice seedlings. Although the mutant plants contained much lower Cd concentration in both roots and shoots than the WT plants, their growth was significantly inhibited relative to the WT plants under the normal condition. Exogenous application of Mn (40 μM) dramatically reduces root and shoot Cd concentrations and alleviates the toxic effect of Cd stress in both rice types, with the mutant plants demonstrating lower Cd concentration and less Cd toxicity in comparison with WT plants. The alleviation of Cd toxicity by Mn addition was more effective in higher Cd level (1.0 μM) than in lower Cd level (0.1 μM). Mn increases the expression of OsNramp5 and other genes, including OsHMA2, OsHMA3, OsIRT1, and OsIRT2, which encode ion transporters related to Mn uptake and transportation, and meanwhile reduces Cd uptake and accumulation in rice seedlings. In short, the knockout of OsNramp5 results in the significant reduction of Cd uptake, but accompanies with Mn deficiency in rice plants, which can be efficiently overcome through exogenous Mn addition.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Di Peng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ahsan Ayyaz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Syed Muhammad Hassan Askri
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shama Naz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Binbin Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| |
Collapse
|
5
|
Ren C, Hou N, Zhang Y, Wang Y, Zhang Y, Qiu Y, Wei S, Skuza L, Dai H. A comparative study on cadmium tolerance and applicability of two Solanum lycopersicum L. cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44952-44964. [PMID: 38954340 DOI: 10.1007/s11356-024-34105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Solanum lycopersicum L. can be classified into low Cd-accumulating and high Cd-accumulating types based on their accumulation characteristics of cadmium (Cd). There are many common S. lycopersicum varieties available in the market, but their specific Cd tolerance and enrichment abilities are not well understood. This article uses two S. lycopersicum cultivars, Yellow Cherry and Yellow Pearl, as experimental materials. The experimental method of soil pot planting was adopted, and Cd concentrations in the soil were added at 0, 0.6, 1.5, 2.5, 5, and 10 mg/kg. The changes in Cd content, biomass, photosynthetic pigment content, and photosynthetic parameters of the two S. lycopersicum cultivars were analyzed to screen for low-accumulation S. lycopersicum cultivars. The results showed that S. lycopersicum are Cd-sensitive plants. The Cd accumulation, photosynthetic parameters, and other basic indicators of Yellow Cherry basically showed significant differences when the soil Cd concentration was 0.6 mg/kg, and the biomass showed significant differences when the soil Cd concentration was 1.5 mg/kg. Except for the Cd accumulation in the roots and leaves of Yellow Pearl, which showed significant differences at a soil Cd concentration of 0.6 mg/kg, the other indicators basically showed significant differences when the soil Cd concentration was 1.5 mg/kg. When the soil Cd concentration was 0.6 mg/kg, the Cd accumulation in the fruit of Yellow Pearl was 0.04 mg/kg, making it a low-accumulation S. lycopersicum variety suitable for promoting cultivation in Cd-contaminated soil at 0.6 mg/kg. In conclusion, the Cd accumulation in the fruit of Yellow Pearl is significantly lower than that of Yellow Cherry and even below the Cd limit value for fresh vegetables specified in GB2762-2017. Therefore, Yellow Pearl can be grown as edible crops in soils with Cd concentrations ≤0.6 mg/kg. Furthermore, Yellow Cherry demonstrate strong Cd tolerance and can be used for the remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Chaoyong Ren
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Yuhan Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Yun Wang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Yating Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Yu Qiu
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, 71-415, Szczecin, Poland
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Qinba biological resources and ecological environment jointly built by province and Ministry (Cultivate), Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
6
|
Li X, Xu B, Sahito ZA, Chen S, Liang Z. Transcriptome analysis reveals cadmium exposure enhanced the isoquinoline alkaloid biosynthesis and disease resistance in Coptis chinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115940. [PMID: 38218103 DOI: 10.1016/j.ecoenv.2024.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bo Xu
- Tianjin Tasly Modern TCM Resources Co., Ltd., Tianjin 300410, China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Shaoning Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312000, China.
| |
Collapse
|
7
|
Pan T, Dong Q, Cai Y, Cai K. Silicon-mediated regulation of cadmium transport and activation of antioxidant defense system enhances Pennisetum glaucum resistance to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:206-213. [PMID: 36641944 DOI: 10.1016/j.plaphy.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/10/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pennisetum glaucum is an important forage grass for livestock. However, the large accumulation of cadmium (Cd) in plant tissues increases the risk of heavy metals entering the food chain in Cd-contaminated soils. Silicon (Si) can inhibit cadmium (Cd) uptake and enhance tolerance of plant to Cd toxicity, but whether and how Si alleviates Cd toxicity in grass and the underlying mechanisms are unclear. The present study explored the differential mechanisms of silicon-induced Cd transport in apoplast and symplast, Cd distribution in root tissue and antioxidant defense system in P. glaucum under Cd stress through hydroponic and pot experiments. The present results showed that exogenous Si supply significantly reduced Cd concentrations in apoplast and symplast; Si treatment increased monosilicic acid concentration in apoplast and symplast of the roots and shoots under Cd stress. Elemental analysis of root microdomains showed that Si treatment increased the distribution of Cd and Si in the endodermis by 42.6% and 14.0%, respectively. Si alleviated the adverse influences of Cd on plant growth, which were manifested in root morphological traits and root activity. In addition, Si addition significantly increased the activities of catalase and superoxide dismutase by 37.0% and 72.7%, and improved the efficiency of the ascorbate-glutathione cycle in Cd-stress shoots. Furthermore, Si significantly reduced the contents of hydrogen peroxide and superoxide anion in Cd-stressed shoots by 16.6% and 48.7%, respectively. These findings demonstrate that Si enhances the resistance of P. glaucum to Cd stress through regulating Cd transport pathways and activating antioxidant defense systems.
Collapse
Affiliation(s)
- Taowen Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiyu Dong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yixia Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|