1
|
Vidyagina EO, Subbotina NM, Belova EN, Kovalitskaya YA, Evdokimov VA, Belyi VA, Kochetov AP, Surin AK, Krutovsky KV, Shestibratov KA. The Potential of Transgenic Hybrid Aspen Plants with a Recombinant Lac Gene from the Fungus Trametes hirsuta to Degrade Trichlorophenol. Genes (Basel) 2025; 16:298. [PMID: 40149450 PMCID: PMC11942117 DOI: 10.3390/genes16030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: Laccases are known to be able to degrade phenolic compounds to simpler components. The main objective of our study was to analyze this property in transgenic aspen plants carrying the laccase gene Lac from Trametes hirsuta which can be potentially used in soil phytoremediation. Methods: We created transgenic aspen plants carrying the laccase gene Lac from Trametes hirsute using the agrobacterial transformation of stem explants with the pBI-Lac vector containing the Lac gene from the white rot fungus T. hirsuta 072 (NCBI GenBank accession number KP027478). Transgenic plants were micropropagated and cultivated in vitro in lines. The degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by plant roots was analyzed by mass-spectrometry with electron ionization using a gas chromatograph. Results: Although plants have their own laccases, those of fungal origin are more effective. All transgenic plants that expressed the recombinant gene degraded 2,4,6-TCP more effectively than non-transformed plants in the control (the degradation efficiency ranged 92 to 98% versus 82% in non-transformed control). Line 47Lac8 demonstrated a 16% higher efficiency than the non-transformed plants in the control. There was also an inverse relationship between the viability of a transgenic line and its level of expression of the recombinant gene. Thus, line 47Lac4 was not viable under native conditions, probably due to lignin synthesis disruptions during the initiation of secondary tissues. This is confirmed by changes in the expression of native genes of lignin biosynthesis. The rest of the transgenic lines did not differ significantly from control in wood growth and biochemistry. The transgenic plant roots were shown to preserve the ability to express the Lac gene ex vitro. Conclusions: Three transgenic lines (47Lac5, 47Lac8, and 47Lac23) with the Lac gene can be recommended for use in soil phytoremediation.
Collapse
Affiliation(s)
- Elena O. Vidyagina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Natalia M. Subbotina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Eugenia N. Belova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Yulia A. Kovalitskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (Y.A.K.); (V.A.E.)
| | - Vyacheslav A. Evdokimov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (Y.A.K.); (V.A.E.)
| | - Vladimir A. Belyi
- Institute of Chemistry, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, Republic of Komi, Pervomaiskaya Str. 48, 167000 Syktyvkar, Russia;
| | - Alexey P. Kochetov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia
| | - Alexey K. Surin
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Konstantin A. Shestibratov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| |
Collapse
|
2
|
Kumari K, Sherpa T, Dey N. Analysis of plant pararetrovirus promoter sequence(s) for developing a useful synthetic promoter with enhanced activity in rice, pearl millet, and tobacco plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426479. [PMID: 39166238 PMCID: PMC11333926 DOI: 10.3389/fpls.2024.1426479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
Promoters are one of the most important components for many gene-based research as they can fine-tune precise gene expression. Many unique plant promoters have been characterized, but strong promoters with dual expression in both monocot and dicot systems are still lacking. In this study, we attempted to make such a promoter by combining specific domains from monocot-infecting pararetroviral-based promoters sugarcane bacilliform virus (SCBV) and banana streak virus (BSV) to a strong dicot-infecting pararetroviral-based promoter mirabilis mosaic virus (MMV). The generated chimeric promoters, MS, SM, MB, and BM, were tested in monocot and dicot systems and further validated in transgenic tobacco plants. We found that the developed chimeric promoters were species-specific (monocot or dicot), which depended on their respective core promoter (CP) region. Furthermore, with this knowledge, deletion-hybrid promoters were developed and evaluated, which led to the development of a unique dual-expressing promoter, MSD3, with high gene expression efficiency (GUS and GFP reporter genes) in rice, pearl millet, and tobacco plants. We conclude that the MSD3 promoter can be an important genetic tool and will be valuable in plant biology research and application.
Collapse
Affiliation(s)
- Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Yang Y, Chaffin TA, Shao Y, Balasubramanian VK, Markillie M, Mitchell H, Rubio‐Wilhelmi MM, Ahkami AH, Blumwald E, Neal Stewart C. Novel synthetic inducible promoters controlling gene expression during water-deficit stress with green tissue specificity in transgenic poplar. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1596-1609. [PMID: 38232002 PMCID: PMC11123411 DOI: 10.1111/pbi.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Synthetic promoters may be designed using short cis-regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type-specific expressed genes in water-deficit stressed poplar (Populus tremula × Populus alba), collected through low-input RNA-seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20-base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5' and 3' regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3-10b-1 (5': GTTAACTTCA) and Syn3-10b-2 (3': GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3-10b-1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3-10b-1 had stronger induction in green tissues under water-deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5' sequence of Syn3 endowed both tissue-specificity and water-deficit inducibility in transgenic poplar, whereas the 3' sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3-10b-1, a green tissue-specific and water-deficit stress-induced promoter, and Syn3, a green tissue-preferential constitutive promoter.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
| | - Timothy A. Chaffin
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
| | - Yuanhua Shao
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | - Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | - Hugh Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | | | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | - Eduardo Blumwald
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
4
|
Yang Y, Tagaloguin P, Chaffin TA, Shao Y, Mazarei M, Millwood RJ, Stewart CN. Drought stress-inducible synthetic promoters designed for poplar are functional in rice. PLANT CELL REPORTS 2024; 43:69. [PMID: 38345745 DOI: 10.1007/s00299-024-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
KEY MESSAGE Water deficit-inducible synthetic promoters, SD9-2 and SD18-1, designed for use in the dicot poplar, are functional in the monocot crop, rice.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Paolo Tagaloguin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Science Department, Mindanao State University-General Santos, Fatima, 9500, General Santos City, Philippines
| | - Timothy A Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Yuanhua Shao
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
5
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
6
|
Yin Z, Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses. Int J Mol Sci 2023; 24:ijms24097759. [PMID: 37175464 PMCID: PMC10178758 DOI: 10.3390/ijms24097759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
Collapse
Affiliation(s)
- Zhihui Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangwei Zhou
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|