1
|
Fidler J, Gietler M, Graska J, Nykiel M, Michalska J, Niziuk J, Pełszyk E, Perkowska ZE, Labudda M. The Nitro-Oxidative Response Is Induced in the Leaves of Barley Plants Exposed to Barium. Int J Mol Sci 2025; 26:4661. [PMID: 40429803 PMCID: PMC12112646 DOI: 10.3390/ijms26104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Barium (Ba) is classified as a non-essential element, meaning that it does not play a requisite role in the physiological processes of living organisms, but it poses a significant health risk to them. Plants that grow in Ba-rich soils, particularly near barite outcrops or mining waste, often accumulate high levels of Ba. Excess Ba in plant cells can lead to the overproduction of reactive oxygen species (ROS), which contributes to oxidative stress. Typically, nitric oxide (NO) can help alleviate heavy metal stress; however, under certain conditions, elevated levels of superoxide and nitric oxide may result in nitrosative and nitrative stress. This study investigated whether exposing barley plants to barium acetate (300 μM and 600 μM) triggers a nitro-oxidative response in spring barley plants. The molecular and biochemical analyses revealed fluctuations in the gene expression and activity of antioxidant enzymes and a steady rise in hydrogen peroxide (H2O2) in the leaves. Lower Ba concentrations and shorter exposures increased NO levels, while higher concentrations and more prolonged exposure reduced them, affecting nitrogen metabolism. These findings highlight the toxicological risks posed by Ba, especially for cultivated plants, and underscore the need for further research on its impact on plant physiology and the potential risks to human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.G.); (J.G.); (M.N.); (J.M.); (J.N.); (E.P.)
| |
Collapse
|
2
|
Huy VN, Methela NJ, Al‐Azawi TNI, Khan M, Faluku M, Brown A, Lee D, Das AK, Amir R, Lay L, Mun B, Kim Y, Hussian A, Yun B. Fulvic acid-releasing chitosan nanoparticles promote the growth and salt stress tolerance of soybean plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70254. [PMID: 40325609 PMCID: PMC12053295 DOI: 10.1111/ppl.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Nanotechnology offers several advantages over conventional inputs, with widespread application in agriculture. The current climate change crisis has accelerated the accumulation of salts in soils, which is a major challenge to global food security. Here, we synthesized fulvic acid-releasing chitosan nanoparticles (Ch-FANPs) for promoting soybean growth and salt stress tolerance. In a screening hydroponic experiment, 0.1 mM Ch-FANPs promoted plant growth and enhanced the growth parameters of pot-grown soybean plants significantly and modulated stomatal movement under control as well as salt stress conditions induced by 150 mM NaCl. Salt stress affected overall plant growth and reduced the chlorophyll content. However, plants treated with Ch-FANPs not only accumulated significantly higher chlorophyll under both control and salt conditions but also enhanced several above- and below-ground growth parameters by more than 50%. Interestingly, the Ch-FANP-treated salt-exposed plants accumulated ~30% less soluble proteins than untreated salt-stressed plants. Ch-FANPs-mediated protection against salt stress was related to the activation of antioxidant machinery as the highest ascorbate peroxidase (APX) activity was recorded in Ch-FANPs-treated salt-stressed plants along with significantly low MDA and H2O2 contents. ICP-MS analysis showed a tremendously higher accumulation of Na+ ions (~35 ppm) in the leaves of salt-stressed plants compared to 19 ppm Na+ ions when also treated with Ch-FANPs. Salt-exposed plants treated with Ch-FANPs had the highest K+ content (~76 ppm) and Ca2+ (62 ppm). Furthermore, Ch-FANPs-mediated protection against salt stress was associated with a significant increase in the expression of salt stress marker genes GmSOS1, GmSOS2, GmNHX1, and GmP5CS1.
Collapse
Affiliation(s)
- Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Nusrat Jahan Methela
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Tiba Nazar Ibrahim Al‐Azawi
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Murtaza Khan
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Alexander Brown
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Da‐Sol Lee
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Ashim Kumar Das
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Rabia Amir
- Atta‐ur‐Rahman School of Applied Biosciences, National University of Sciences and TechnologyPakistan
| | - Liny Lay
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Bong‐Gyu Mun
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuRepublic of Korea
| | - Yoohna Kim
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Adil Hussian
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
- Department of AgricultureAbdul Wali Khan University MardanKhyber PakhtunkhwaPakistan
| | - Byung‐Wook Yun
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| |
Collapse
|
3
|
Msarie MW, Methela NJ, Islam MS, An TH, Das AK, Lee DS, Mun BG, Yun BW. Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study. Int J Mol Sci 2025; 26:609. [PMID: 39859323 PMCID: PMC11765656 DOI: 10.3390/ijms26020609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (Glycine max), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean (Glycine max). Two soybean cultivars, Seonpung (salt-tolerant) and Cheongja (salt-sensitive), were analyzed for various physiological, biochemical, and genetic traits under salt stress. The results showed that the combined GSNO and Si treatment significantly improved several key traits, including plant height, relative water content, root development, nodule numbers, chlorophyll content, and stomatal aperture, under both control and salt stress conditions. Additionally, this treatment optimized ion homeostasis by enhancing the Na/K ratio and Ca content, while reducing damage markers such as electrolyte leakage, malondialdehyde, and hydrogen peroxide. The stress-responsive compounds, including proline, ascorbate peroxidase, and water-soluble proteins, were elevated under stress conditions, indicating improved tolerance. Gene expression analysis revealed significant upregulation of genes such as GmNHX1, GmSOS2, and GmAKT1, associated with salt stress response, while GmNIP2.1, GmNIP2.2, and GmLBR were downregulated in both varieties. Notably, the salt-sensitive variety Cheongja exhibited higher electrolyte leakage and oxidative damage compared to the salt-tolerant Seonpung. These findings suggest that the combination of GSNO and silicon enhances salt tolerance in soybean by improving physiological resilience, ion homeostasis, and stress-responsive gene expression.
Collapse
Affiliation(s)
- Meshari Winledy Msarie
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
- Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
- Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Tran Hoang An
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Byung-Wook Yun
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| |
Collapse
|
4
|
Senthamizh R, Vishwakarma P, Sinharoy A, Sinha R, Sharma S, Mal J. Biogenic nanoparticles and its application in crop protection against abiotic stress: A new dimension in agri-nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177884. [PMID: 39647194 DOI: 10.1016/j.scitotenv.2024.177884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The food demand to support the growing population worldwide is expected to increase up to 60 % by 2050. But, various abiotic stress including heat, drought, salinity, and heavy metal stress are becoming more prevalent due to global warming and seriously affecting the crop productivity. Nanotechnology has a great potential to solve this issue, as various nanoparticles (NPs) with their unique physical and chemical characteristics, have shown promising ability to enhance the stress tolerance and subsequently, improving the plant growth and development. Although NPs can be synthesized either via physically or chemically or biologically, application of biogenic NPs in agriculture are gaining strong attention due to their economic, environmental friendly, and sustainable benefits. The implementations of biogenic NPs have been reported to be enhancing both the quantitative and qualitative properties of crop production significantly by mitigating abiotic stress. Hence, this review paper critically discussed the application of biogenic NPs, synthesized using various biological methods i.e. bacteria, fungi, algae, and plant-based, in enhancing the abiotic stress resilience and crop production. Adverse effects of the major abiotic stresses on crops have also been highlighted in the paper. The paper also focused on the mechanistic insights of plant-NPs interactions, uptake, translocation and NPs-induced biochemical and molecular changes in plants to help mitigating the abiotic stress. The potential challenges and environmental implications of extensive use of biogenic NPs in agriculture compared to the chemogenic NPs has also been critically assessed. Future research direction is provided to delve into the potential of biogenic NPs as promising tools for mitigating abiotic stress, and improving plant growth and development for a sustainable agriculture via nanotechnology.
Collapse
Affiliation(s)
- R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arindam Sinharoy
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
5
|
Gomes M, Ralph TJ, Humphries MS, Graves BP, Kobayashi T, Gore DB. Waterborne contaminants in high intensity agriculture and plant production: A review of on-site and downstream impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178084. [PMID: 39674148 DOI: 10.1016/j.scitotenv.2024.178084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes. Production nurseries are moving to adopt best management practices that recycle water; however, the risks associated with waterborne contaminants of various types, including nutrients, pesticides, plant pathogens, micro-plastics, and toxic metals, are not well understood. We review and synthesise the physical and biogeochemical factors that contribute to waterborne contaminant risk, and the main types of contaminants that are likely to require management, at plant production nurseries. Catchment characteristics (i.e., topography, land use), hydroclimatic factors (i.e., storms, floods, droughts), and landscape hydrological and sediment connectivity influence surface runoff, sediment transport, and associated contaminant transfer and storage. High hydrological connectivity can increase the risk of contaminant transport from the surrounding landscape to nurseries, with potential negative impacts to water quality in reservoirs and in turn plant health. High connectivity may also increase the risk of contaminants (e.g., sediment, pesticides, and phytopathogens) being transferred from nursery farms into downstream waterways, with consequences for aquatic ecosystems. Like all intensive agricultural operations, nurseries need to consider sources of irrigation water, water treatment and management strategies, and catchment and hydroclimatic factors, to mitigate the spread of contaminants and reduce their impacts on both plant production and the surrounding environment. Further research is needed to quantify contaminant loads and transfer pathways in these agricultural systems, and to better understand the threshold levels of contaminants that adversely affect plant health and which may result in devastating economic losses.
Collapse
Affiliation(s)
- Megan Gomes
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa; School of Natural Sciences, Macquarie University, NSW, Australia.
| | - Timothy J Ralph
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Marc S Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Bradley P Graves
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Tsuyoshi Kobayashi
- Science and Insights Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Damian B Gore
- School of Natural Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
6
|
Samsudin MH, Yusoff MZM, Hassan MA, Zakaria MR, Roslan AM, Salamat SS, Hasan MY, Zainudin MHM, Farid MAA, Shirai Y. Assessment of pilot-scale sewage sludge pelletization for non-food crop fertilization: nutrient content, pathogenicity, and growth performance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:807. [PMID: 39133340 DOI: 10.1007/s10661-024-12956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Application of sewage sludge as fertilizer can be beneficial for sustainable agriculture as it could largely account for nitrogen and phosphorus demand for crops and has lower costs compared to other disposal routes, e.g., incineration, and sanitary landfills. This study evaluates the feasibility of pilot-scale pelletization of sewage sludge for non-food crops (e.g., ornamental plants). The co-pelletization method was designed by mixing sewage sludge and binder (tapioca starch) at a 9:1 sludge-to-starch weight ratio. The amount of nitrogen (N), phosphorus (P), and potassium (K) of the resultant pellets were determined at 5.7%, 4.9%, and 0.2%, respectively. Following Malaysian and US Standards, non-essential elements and pathogenicity of the pelletized sewage sludge were measured below the predetermined limits and hence safe for agricultural application. The planting trial using 50% inorganic fertilizer + 50% sewage sludge pellets exhibited a promising result on the growth of the flowering plant Celosia plumosa, with having better dimension and color, 20% higher in height, 4% more chlorophyll content, 54% more leaf, 43% greater stem growth, and 27% more flowers compared to control. Likewise, the planting trial on Tagetes erecta resulted in 10.5% wider leaf, 10.6% heavier leaf dry weight, and 12.5% more chlorophyll content compared to control with full usage of inorganic fertilizer. By considering liquidities to operate the production facility, the economic analysis estimated that the production cost per ton of pelletized sewage sludge produced was USD 0.98.
Collapse
Affiliation(s)
- Mohd Hafif Samsudin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Rafein Zakaria
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmad Muhaimin Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Suliza Salamat
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Crop Production, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - Muhamad Yusuf Hasan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Section of Bioengineering Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
- Institute of Chemical and Bioengineering, Vendor City, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Mohd Huzairi Mohd Zainudin
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohammed Abdillah Ahmad Farid
- Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, Hibikino 2-4, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka, 808-0196, Japan
| | - Yoshihito Shirai
- Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, Hibikino 2-4, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka, 808-0196, Japan
| |
Collapse
|
7
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
8
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Methela NJ, Pande A, Islam MS, Rahim W, Hussain A, Lee DS, Mun BG, Maria Joseph Raj NP, Kim SJ, Kim Y, Yun BW. Chitosan-GSNO nanoparticles: a positive modulator of drought stress tolerance in soybean. BMC PLANT BIOLOGY 2023; 23:639. [PMID: 38082263 PMCID: PMC10712192 DOI: 10.1186/s12870-023-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 μM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anjali Pande
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Waqas Rahim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan.
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Nirmal Prashanth Maria Joseph Raj
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Energy Harvesting Research Group, School of Physics & Astronomy, SUPA, University of St Andrews, St. Andrews, Fife, KY16 9SS, UK
| | - Sang-Jae Kim
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Yoonha Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
10
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
11
|
Gomes DG, Debiasi TV, Pelegrino MT, Pereira RM, Ondrasek G, Batista BL, Seabra AB, Oliveira HC. Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants under Copper Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3245. [PMID: 36501285 PMCID: PMC9740903 DOI: 10.3390/plants11233245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/07/2023]
Abstract
The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.
Collapse
Affiliation(s)
- Diego G. Gomes
- Department of Agronomy, State University of Londrina (UEL), Celso Garcia Cid Road, Km 380, Londrina 86057-970, Brazil
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, Km 380, Londrina 86057-970, Brazil
| | - Tatiane V. Debiasi
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, Km 380, Londrina 86057-970, Brazil
| | - Milena T. Pelegrino
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Rodrigo M. Pereira
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Bruno L. Batista
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Halley C. Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, Km 380, Londrina 86057-970, Brazil
| |
Collapse
|