1
|
Shi Y, Pan X, Wu X, Xu J, Xiang W, Li Z, Zheng Y, Wang X, Dong F. First insight into the formation of transformation products of a biopesticide guvermectin in rat and its health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176408. [PMID: 39306131 DOI: 10.1016/j.scitotenv.2024.176408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Guvermectin is a new chemical isolated from the microbial metabolites and is registered as a novel plant growth regulator. However, the biotransformation behavior and toxicity of guvermectin to mammals remain unclear and have unknown implications for consumers or occupationally exposed persons. Therefore, we investigated the biotransformation of guvermectin in vivo and in vitro, its effects on CYP450s activities, and its oral toxicity in rats. The results showed that guvermectin could be rapidly absorbed when administered orally and eliminated rapidly in the serum, with a half-life of 6.3 h. Four phase І metabolism products of guvermectin in the serum were screened and identified using UPLC-QTOF/MS. Two products, adenine and psicofuramine, were confirmed using reference standards. Hydrolysis and oxidation reactions were the main transformation pathways. Oral toxicity tests in rats showed that guvermectin exhibited light toxicity to rats (LC50 > 5000 mg/kg b.w.). However, an in vitro probe drug experiment revealed that guvermectin could induce CYP2D6 activity, and a lower concentration of guvermectin exhibited a stronger effect on CYP2D6 than higher concentration (1.38-fold). Molecular docking studies implied that guvermectin was an antagonist of CYP1A2, CYP2C9, and CYP3A4. These findings provided a better understanding of the environmental and human health risks associated with guvermectin and promote its rational use. However, the potential risk of endocrine disruption can not be ignored due to the presence of nucleoside-like metabolites.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key laboratory of microbiology, Northeast Agricultural University, Harbin 150030, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key laboratory of microbiology, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Li
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjing Wang
- Key laboratory of microbiology, Northeast Agricultural University, Harbin 150030, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Ju J, Yang J, Wei J, Yuan W, Li Y, Li D, Ling P, Ma Q, Wang C, Dai M, Su J. GhASHH1.A and GhASHH2.A Improve Tolerance to High and Low Temperatures and Accelerate the Flowering Response to Temperature in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:11321. [PMID: 39457102 PMCID: PMC11508336 DOI: 10.3390/ijms252011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The trithorax group (TrxG) complex is an important protein in the regulation of plant histone methylation. The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) gene family, as important family members of the TrxG complex, has been shown to regulate tolerance to abiotic stress and growth and development in many plants. In this study, we identified nine GhASH1s in upland cotton. Bioinformatics analysis revealed that GhASH1s contain a variety of cis-acting elements related to stress resistance and growth and development. The transcriptome expression profiles revealed that GhASHH1.A and GhASHH2.A genes expression were upregulated in flower organs and in response to external temperature stress. The results of virus-induced gene silencing (VIGS) indicated that GhASHH1.A and GhASHH2.A genes silencing reduced the ability of cotton to adapt to temperature stress and delayed the development of the flowering phenotype. We also showed that the silencing of these two target genes did not induce early flowering at high temperature (32 °C), suggesting that GhASHH1.A and GhASHH2.A might regulate cotton flowering in response to temperature. These findings provide genetic resources for future breeding of early-maturing and temperature-stress-tolerant cotton varieties.
Collapse
Affiliation(s)
- Jisheng Ju
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Junning Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Jiazhi Wei
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Wenmin Yuan
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Ying Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Dandan Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Pingjie Ling
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Maohua Dai
- Hebei Provincial Key Laboratory of Crop Drought Resistance Research, Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| |
Collapse
|
3
|
Liu C, Zhang M, Li L, Wang X, Li S, Xiang W. Development and Application of the Novel Plant Growth Regulator Guvermectin: A Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8365-8371. [PMID: 38588402 DOI: 10.1021/acs.jafc.3c09704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plant growth regulators (PGRs) play an important role in alleviating the detrimental effects of biotic and abiotic stress and improving crop yield and quality. As a novel PGR from Streptomyces registered in 2021, guvermectin (GV) has the potential to improve plant yield and defense, making its application in agriculture a subject of interest. Here, we describe the discovery process, functional activities, agricultural applications, toxicity, environmental safety, and biosynthetic mechanism of GV. This Perspective provides a guide for the development of novel PGRs from microorganisms.
Collapse
Affiliation(s)
- Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Shi Y, Jiao B, Guo P, Pan X, Wu X, Xu J, Xiang W, Dong F, Wang X, Zheng Y. Toxicity assessment of a novel biopesticide guvermectin and identification of its transformation products in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166113. [PMID: 37572911 DOI: 10.1016/j.scitotenv.2023.166113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Guvermectin is a novel biopesticide often used as seed soaking to promote the rice yield. However, its biotoxicity and degradation behavior in soils were still not disclosed, which posed a knowledge gap to guide its rational application. Therefore, the degradation behaviors of guvermectin in four typical soils under aerobic and anaerobic conditions were investigated in the laboratory. The results showed that guvermectin was degraded fast with DT50 ranging from 0.95 to 10.10 d, and the degradation rate was higher in aerobic condition than that in anaerobic condition. Eight transformation products were screened using UPLC-QTOF/MS. The acute toxicities tests of guvermectin to Coturnix coturnix japonica and Apis mellifera were measured by biological laboratory experiments, and the acute and chronic toxicities of transformation products to Danio rerio, Daphnia magna Straus and Green algae were predicted by ECOSAR software. The results showed that guvermectin has low toxic to quail and honeybee (LD50 2000 mg a.i./kg body weight, LD50 ˃ 100 μg a.i./bee), and its transformation products were also low toxic class to Danio rerio, Daphnia magna Straus and Green algae (LC50/EC50 > 100 mg a.i./L). However, the nucleoside-like metabolites may pose a potential risk due to their similarity to genetic material, which should be concerned. The findings provided important environmental risk assessment data for the rational use of guvermectin.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbiology, Northeast Agricultural University, Harbin, China
| | - Bin Jiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilin Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbiology, Northeast Agricultural University, Harbin, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiangjing Wang
- Key Laboratory of Microbiology, Northeast Agricultural University, Harbin, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
6
|
Shi Y, An X, Zhang B, Pan X, Wu X, Xu J, Xiang W, Dong F, Wang X, Zheng Y. Hydrolysis, Photolysis, and Biotoxicity Assessment of a Novel Biopesticide, Guvermectin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16117-16125. [PMID: 36512618 DOI: 10.1021/acs.jafc.2c05988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Guvermectin is a biopesticide isolated from the secondary metabolites of Streptomyces sp. NEAU6, an endogenous actinomyces of a Chinese medicine named Paris polyphylla. However, the environmental degradation behavior and biotoxicity of guvermectin are still unclear, which may affect its rational application. Therefore, the degradation of guvermectin in water at different pH values (pH 4, pH 6, pH 7, and pH 9) and with or without light was investigated in the laboratory. The results showed that guvermectin could be degraded in pH 4 solution, and the presence of light irradiation enhanced the degradation process with a DT50 of 2.95 and 12 days for photolysis and hydrolysis, respectively. However, guvermectin was fairly stable in other conditions. Three products transformed from guvermectin degradation were identified by UPLC-QTOF/MS. Biotoxicity assessment was performed on Danio rerio and Daphnia magna Straus by ECOSAR prediction and in vivo biological tests. The test data showed that guvermectin and its transformation products exhibited low toxicities to D. rerio and D. magna Straus (LC50/EC50 > 100 mg a.i./L), and the transformation products had lower toxicity than their parent substance. The results provided a reference for elucidating the potential risk of guvermectin to nontarget organisms and promoting its rational use.
Collapse
Affiliation(s)
- Yuan Shi
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangjing Wang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|