1
|
Yao PQ, Xie LH, Li MY, Jiao SQ, Qi SZ, Wang Z, Cheng SP. Varied chromosome distribution behaviours during meiosis in triploid Chinese chives contribute to the formation of viable pollen. Chromosome Res 2024; 32:15. [PMID: 39617814 DOI: 10.1007/s10577-024-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025]
Abstract
Triploids play an important role in the polyploidization process and are considered a bridge between diploids and polyploids. To inform plant polyploidization research and polyploid breeding, it is important to explore chromosome behaviour during triploid pollen development, pollen fertility problems in triploids and the potential value of utilizing triploids. In this study, acetocarmine, carbol fuchsin and fluorescence staining methods were used to observe microsporogenesis and microspore development in fertile triploid Chinese chives. The results revealed that some of the pollen mother cells were able to undergo equal chromosome distributions (approximately 36%), whereas other pollen mother cells formed lagging chromosomes, chromosome bridges, micronuclei and early cytoplasmic divisions during microsporogenesis, resulting in microspores of different sizes. Regardless of whether an equal tetrad or an abnormal polyad was formed, microspores were released from callose in a normal manner and contained nuclei. During the process of microspore development, most of the microspore nuclei disappeared gradually and ultimately formed empty pollen cells that lacked nuclei. During the meiosis of pollen mother cells in triploid Chinese chives, a variety of chromosome distribution behaviours contribute to the formation of some viable pollen.
Collapse
Affiliation(s)
- Peng-Qiang Yao
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| | - Li-Hua Xie
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| | - Mei-Yu Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Si-Qian Jiao
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Shuai-Zheng Qi
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Zhe Wang
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Shi-Ping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| |
Collapse
|
2
|
Vaz de Sousa D, Greve M, Oberlander KC. Friends without benefits: Extensive cytotype sympatry and polyploid persistence in an African geophyte. AMERICAN JOURNAL OF BOTANY 2024; 111:e16291. [PMID: 38439133 DOI: 10.1002/ajb2.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/06/2024]
Abstract
PREMISE Polyploidy is a major factor in plant adaptation and speciation. Multiple mechanisms contribute to autopolyploid frequency within populations, but uncertainties remain regarding mechanisms that facilitate polyploid establishment and persistence. Here we aimed to document and predict cytotype distributions of Oxalis obliquifolia Steud. ex A. Rich. across Gauteng, South Africa, and test for evidence of possible mechanisms, including morphological, phenological, and reproductive traits, that may potentially facilitate polyploid persistence. METHODS Over 320 O. obliquifolia plants from 25 sites were cytotyped using flow cytometry, and DNA ploidy was confirmed using meiotic chromosome squashes. Cytotypes were mapped and correlations with abiotic variables assessed using ordinations. To assess morphological and phenological associations with cytotype, we grew multiple cytotypes in a common garden, measured phenotypic traits and compared them using linear models and discriminant analyses. Intercytotype reproductive isolation was assessed using crossing experiments, and AMOVAs based on ITS DNA sequences tested for cytogeographic structure. RESULTS Six cytotypes were identified, and most sites had multiple cytotypes. Abiotic variables were not predictive of cytotype distribution. A clear gigas effect was present. Differences in flower size and phenology suggested pollinator interactions could play a role in polyploid persistence. Intercytotype crosses produced seed at low frequency. DNA data suggested diploids and polyploids were largely reproductively isolated in situ, and polyploidization events were not frequent enough to explain high cytotype sympatry. CONCLUSIONS Diploids and polyploids are behaving as separate species, despite little observable niche differentiation and non-zero potential intercytotype seed set. Tests on biotic interactions and intercytotype F1 fitness may provide insights into diploid and polyploid coexistence.
Collapse
Affiliation(s)
- Damian Vaz de Sousa
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
- H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| | - Michelle Greve
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Kenneth C Oberlander
- H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, Van de Peer Y. Interspecific transfer of genetic information through polyploid bridges. Proc Natl Acad Sci U S A 2024; 121:e2400018121. [PMID: 38748576 PMCID: PMC11126971 DOI: 10.1073/pnas.2400018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.
Collapse
Affiliation(s)
- Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|