1
|
Wang X, Lu D, Schönbeck L, Han Y, Bai S, Yu D, Han Q, Wang QW. Contrasting effects of prolonged drought and nitrogen addition on growth and non-structural carbohydrate dynamics in coexisting Pinus koraiensis and Fraxinus mandshurica saplings. FORESTRY RESEARCH 2025; 5:e003. [PMID: 40028427 PMCID: PMC11870304 DOI: 10.48130/forres-0025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025]
Abstract
Global change drivers, including drought and nitrogen (N) deposition, exert a wide-ranging influence on tree growth and fitness. However, our current understanding of their combined effects is still limited. Non-structural carbohydrate (NSC) storage is an important physiological trait for tree acclimation to drought. It acts as an important mobile carbon reserve to support tree function when carbon fixation or transport are reduced under drought. It is crucial to investigate how tree species with different NSC storage characteristics (e.g., storage level, partitioning) respond to drought events, and how N alters these patterns. We investigated the combined effects of drought (80% reduction in precipitation) and N addition (0, 30, and 120 kg/ha/year) on the growth and NSC storage of Pinus koraiensis and Fraxinus mandshurica (dominant species in the forests of Northeast China) saplings over two consecutive growing seasons. The results indicated that P. koraiensis exhibited high tolerance to drought, with growth unaffected by drought alone until the mid-growing season in the second year. However, N addition reversed its drought acclimation by impairing root development and exacerbating carbon shortage. In contrast, F. mandshurica was sensitive to drought, it had significantly reduced growth at harvest despite a large amount of NSC accumulation. The present study highlights the contrasting effects of N deposition on drought adaptation in coexisting conifer and temperate broadleaf species, the conifer showing a higher risk of carbon deficiency with increasing N deposition (i.e., a stronger reversal effect of N addition), whereas an earlier cessation of growth under drought defines a larger carbon safety margin for broadleaved species. These results have important implications for the development of adaptive forest management strategies such as to enhance the protection of conifers in the context of global change.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Deliang Lu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Leonie Schönbeck
- Southern Swedish Forest Research Centre, Swedish University for Agricultural Sciences, Lomma 23422, Sweden
| | - Yini Han
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Shangbin Bai
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Dapao Yu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Western Slope of Changbai Mountain National Field Research Observation Station of Forest Ecosystem, Baishan 134506, China
| | - Qingmin Han
- Forestry and Forest Products Research Institute (FFPRI), Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Qing-Wei Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Western Slope of Changbai Mountain National Field Research Observation Station of Forest Ecosystem, Baishan 134506, China
| |
Collapse
|
2
|
He P, Sardans J, Wang X, Ma C, Man L, Peñuelas J, Han X, Jiang Y, Li MH. Nutritional changes in trees during drought-induced mortality: A comprehensive meta-analysis and a field study. GLOBAL CHANGE BIOLOGY 2024; 30:e17133. [PMID: 38273504 DOI: 10.1111/gcb.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Both macronutrients and micronutrients are essential for tree growth and development through participating in various ecophysiological processes. However, the impact of the nutritional status of trees on their ability to withstand drought-induced mortality remains inconclusive. We thus conducted a comprehensive meta-analysis, compiling data on 11 essential nutrients from 44 publications (493 independent observations). Additionally, a field study was conducted on Pinus sylvestris L. trees with varying drought-induced vitality loss in the "Visp" forest in southern Switzerland. No consistent decline in tree nutritional status was observed during tree mortality. The meta-analysis revealed significantly lower leaf potassium (K), iron (Fe), and copper (Cu) concentrations with tree mortality. However, the field study showed no causal relationships between nutritional levels and the vitality status of trees. This discrepancy is mainly attributed to the intrinsic differences in the two types of experimental designs and the ontogenetic stages of target trees. Nutrient reductions preceding tree mortality were predominantly observed in non-field conditions, where the study was conducted on seedlings and saplings with underdeveloped root systems. It limits the nutrient uptake capacity of these young trees during drought. Furthermore, tree nutritional responses are also influenced by many variables. Specifically, (a) leaf nutrients are more susceptible to drought stress than other organs; (b) reduced tree nutrient concentrations are more prevalent in evergreen species during drought-induced mortality; (c) of all biomes, Mediterranean forests are most vulnerable to drought-induced nutrient deficiencies; (d) soil types affect the direction and extent of tree nutritional responses. We identified factors that influence the relationship between tree nutritional status and drought survival, and proposed potential early-warning indicators of impending tree mortality, for example, decreased K concentrations with declining vitality. These findings contribute to our understanding of tree responses to drought and provide practical implications for forest management strategies in the context of global change.
Collapse
Affiliation(s)
- Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xiaoyu Wang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chengcang Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Liang Man
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|