1
|
Mazuecos-Aguilera I, Anta-Fernández F, Crespo-Barreiro A, Martínez-Quesada A, Lombana-Larrea L, González-Andrés F. Plant growth-promoting rhizobacteria enhanced induced systemic resistance of tomato against Botrytis cinerea phytopathogen. FRONTIERS IN PLANT SCIENCE 2025; 16:1570986. [PMID: 40303853 PMCID: PMC12038444 DOI: 10.3389/fpls.2025.1570986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Introduction Botrytis cinerea is one of the pathogenic fungi causing major problems worldwide in crops such as tomato. Some Plant Growth-Promoting Rhizobacteria (PGPR) can activate induced systemic resistance (ISR) pathways in crops, reducing the need for antifungals. Methods Three strains belonging to the species Peribacillus frigoritolerans (CD_FICOS_02), Pseudomonas canadensis (CD_FICOS_03), and Azotobacter chroococcum (CD_FICOS_04), which exhibit outstanding PGPR properties, were evaluated for their ability to protect tomato plants against B. cinerea infection by ISR via soil inoculation. Results The strains CD_FICOS_02 and CD_FICOS_03 reduced B. cinerea incidence and plant oxidative stress. The first strain mainly increased the expression of genes related to the salicylic acid pathway, while the second increased the expression of genes related to the jasmonic acid/ethylene hormonal pathway, indicating preferential ISR activation by each of these pathways. In addition, CD_FICOS_03 was able to increase the root and aerial biomass production of infected plants compared to the control. Interestingly, although the strain CD_FICOS_04 did not reduce the damage caused by B. cinerea, it increased the biomass of infected plants. Discussion Our results suggest that the best strategy for biocontrol of B. cinerea is to combine the ability to promote plant growth with the ability to induce systemic resistance, as demonstrated by strains P. frigoritolerans CD_FICOS_02 and P. canadensis CD_FICOS_03.
Collapse
Affiliation(s)
- Ismael Mazuecos-Aguilera
- Chemical, Environmental and Bioprocess Engineering Group, Institute for Research and Innovation in Engineering (I4), University of León, León, Spain
| | - Francisco Anta-Fernández
- Chemical, Environmental and Bioprocess Engineering Group, Institute for Research and Innovation in Engineering (I4), University of León, León, Spain
| | - Andrea Crespo-Barreiro
- Chemical, Environmental and Bioprocess Engineering Group, Institute for Research and Innovation in Engineering (I4), University of León, León, Spain
| | | | | | - Fernando González-Andrés
- Chemical, Environmental and Bioprocess Engineering Group, Institute for Research and Innovation in Engineering (I4), University of León, León, Spain
| |
Collapse
|
2
|
Berdaguer R, van der Wielen N, Lorenzo ZC, Testerink C, Karlova R. The bryophyte rhizoid-sphere microbiome responds to water deficit. PLANT, CELL & ENVIRONMENT 2024; 47:4754-4767. [PMID: 39078220 DOI: 10.1111/pce.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
The roots of vascular plants are colonised by a multitude of microbes, which play an important role in plant health and stress resilience. Drought stress in particular is devastating for crop yield and causes major shifts in the rhizosphere microbial communities. However, the microbiome associated to the rhizoids (hereafter termed rhizoid-sphere) of the nonvascular bryophytes remains largely unexplored. Here, we use amplicon sequencing to explore the rhizoid-sphere microbiome of three bryophyte species under drought and well-watered conditions. Comparing rhizoid-sphere microbial communities associated with the two liverworts Marchantia polymorpha and Marchantia paleacea and the moss Physcomitrium patens showed characteristic differences in composition between host species and both conserved and unique changes under drought. At phylum level, these changes were similar to changes in the rhizosphere of angiosperms under drought. Furthermore, we observed strong differences in rhizoid-sphere colonisation between bryophyte species for taxa known for nitrogen fixation and plant growth promotion. Interestingly, M. polymorpha prioritised the growth of belowground organs under osmotic stress, as is the case for angiosperms under drought. Taken together, our results show interesting parallels between bryophytes and angiosperms in the relation with their rhizo(id-)sphere, suggesting evolutionary conservation among land plants in their response to drought stress.
Collapse
Affiliation(s)
- Roland Berdaguer
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | | | - Zulema Carracedo Lorenzo
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Chen M, Xing Y, Chen C, Wang Z. Enhancing sugarcane's drought resilience: the influence of Streptomycetales and Rhizobiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1471044. [PMID: 39678007 PMCID: PMC11637870 DOI: 10.3389/fpls.2024.1471044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Drought stress is a critical environmental factor affecting sugarcane yield, and the adaptability of the sugarcane rhizosphere bacterial community is essential for drought tolerance. This review examines the adaptive responses of sugarcane rhizosphere bacterial communities to water stress and explores their significant role in enhancing sugarcane drought tolerance. Under drought conditions, the sugarcane rhizosphere bacterial community undergoes structural and functional shifts, particularly the enrichment of beneficial bacteria, including Streptomycetales and Rhizobiales. These bacteria enhance sugarcane resilience to drought through various means, including nutrient acquisition and phytohormone synthesis. Furthermore, changes in the rhizosphere bacterial community were closely associated with the composition and levels of soil metabolites, which significantly influenced the physiological and biochemical processes of sugarcane during drought stress. This study deepens our understanding of rhizosphere bacterial communities and their interactions with sugarcane, laying a scientific foundation for developing drought-resistant sugarcane varieties, optimizing agricultural practices, and opening new avenues for agricultural applications.
Collapse
Affiliation(s)
| | | | | | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Wang T, Ruan Y, Xu Q, Shen Q, Ling N, Vandenkoornhuyse P. Effect of plant-derived microbial soil legacy in a grafting system-a turn for the better. MICROBIOME 2024; 12:234. [PMID: 39543707 PMCID: PMC11566652 DOI: 10.1186/s40168-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Plant-soil feedback arises from microbial legacies left by plants in the soil. Grafting is a common technique used to prevent yield declines in monocultures. Yet, our understanding of how grafting alters the composition of soil microbiota and how these changes affect subsequent crop performance remains limited. Our experiment involved monoculturing ungrafted and grafted watermelons to obtain conditioned soils, followed by growing the watermelons on the conditioned soils to investigate plant-soil feedback effects. RESULTS Ungrafted plants grew better in soil previously conditioned by a different plant (heterospecific soil) while grafted plants grew better in soil conditioned by the same plant (conspecific soil). We demonstrated experimentally that these differences in growth were linked to changes in microorganisms. Using a supervised machine learning algorithm, we showed that differences in the relative abundance of certain genera, such as Rhizobium, Chryseobacterium, Fusarium, and Aspergillus, significantly influenced the conspecific plant-soil feedback. Metabolomic analyses revealed that ungrafted plants in heterospecific soil enriched arginine biosynthesis, whereas grafted plants in conspecific soil increased sphingolipid metabolism. Elsewhere, the metagenome-assembled genomes (MAGs) of ungrafted plants identified in heterospecific soil include Chryseobacterium and Lysobacter, microorganisms having been prominently identified in earlier research as contributors to plant growth. Metabolic reconstruction revealed the putative ability of Chryseobacterium to convert D-glucono-1,5-lactone to gluconic acid, pointing to distinct disease-suppressive mechanisms and hence distinct microbial functional legacies between grafted and ungrafted plants. CONCLUSIONS Our findings show a deep impact of the soil microbial reservoir on plant growth and suggest the necessity to protect and improve this microbial community in agricultural soils. The work also suggests possibilities of optimizing microbiota-mediated benefits through grafting herein, a way that "engineered" soil microbial communities for better plant growth. Video Abstract.
Collapse
Affiliation(s)
- Tingting Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Université de Rennes, CNRS, UMR 6553 ECOBIO (écosystèmes, biodiversité, évolution), Rennes, 35000, France
| | - Yang Ruan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730020, China.
| | - Philippe Vandenkoornhuyse
- Université de Rennes, CNRS, UMR 6553 ECOBIO (écosystèmes, biodiversité, évolution), Rennes, 35000, France
| |
Collapse
|
5
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
6
|
Iriart V, Rarick EM, Ashman TL. Rhizobial variation, more than plant variation, mediates plant symbiotic and fitness responses to herbicide stress. Ecology 2024:e4426. [PMID: 39440990 DOI: 10.1002/ecy.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle. While off-target herbicide exposure is recognized as a significant stressor impacting wild plants, we lack knowledge about how it affects the symbiotic relationship between plants and rhizobia. Moreover, we do not know whether the impact of herbicide exposure on symbiotic traits or plant fitness might be ameliorated by plant or rhizobial genetic variation. To address these gaps, we conducted a greenhouse study where we grew 17 full-sibling genetic families of red clover (Trifolium pratense) either alone (uninoculated) or in symbiosis with one of two genetic strains of rhizobia (Rhizobium leguminosarum) and exposed them to a concentration of the herbicide dicamba that simulated "drift" (i.e., off-target atmospheric movement) or a control solution. We recorded responses in immediate vegetative injury, key features of the plant-rhizobia mutualism (nodule number, nodule size, and N fixation), mutualism outcomes, and plant fitness (biomass). In general, we found that rhizobial variation more than plant variation determined outcomes of mutualism and plant fitness in response to herbicide exposure. Herbicide damage response depended on plant family, but also whether plants were inoculated with rhizobia and if so, with which strain. Rhizobial strain variation determined nodule number and size, but this was herbicide treatment-dependent. In contrast, strain and herbicide treatment independently impacted symbiotic N fixation. And while herbicide exposure significantly reduced plant fitness, this effect depended on inoculation state. Furthermore, the differential fitness benefits that the two rhizobial strains provided plants seemed to diminish under herbicidal conditions. Altogether, these findings suggest that exposure to low levels of herbicide impact key components of the plant-rhizobia mutualism as well as plant fitness, but genetic variation in the partners determines the magnitude and/or direction of these effects. In particular, our results highlight a strong role of rhizobial strain identity in driving both symbiotic and plant growth responses to herbicide stress.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Rarick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Legeay J, Errafii K, Ziami A, Hijri M. The rhizosphere of a drought-tolerant plant species in Morocco: A refuge of high microbial diversity with no taxon preference. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13254. [PMID: 38725134 PMCID: PMC11082428 DOI: 10.1111/1758-2229.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/13/2024]
Abstract
Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Khaoula Errafii
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Abdelhadi Ziami
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Mohamed Hijri
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
- Institut de Recherche en Biologie VégétaleDépartement de Sciences Biologiques, Université de MontréalMontrealQuebecCanada
| |
Collapse
|
8
|
Marik D, Sharma P, Chauhan NS, Jangir N, Shekhawat RS, Verma D, Mukherjee M, Abiala M, Roy C, Yadav P, Sadhukhan A. Peribacillus frigoritolerans T7-IITJ, a potential biofertilizer, induces plant growth-promoting genes of Arabidopsis thaliana. J Appl Microbiol 2024; 135:lxae066. [PMID: 38486365 DOI: 10.1093/jambio/lxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
AIMS This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.
Collapse
Affiliation(s)
- Debankona Marik
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Jangir
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | | | - Devanshu Verma
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Manasi Mukherjee
- Jodhpur City Knowledge and Innovation Foundation, IIT Jodhpur, Jodhpur 342030, India
| | - Moses Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City 110106, Nigeria
| | - Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University Jodhpur, Jodhpur 342304, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| |
Collapse
|
9
|
Al-Turki A, Murali M, Omar AF, Rehan M, Sayyed R. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front Microbiol 2023; 14:1214845. [PMID: 37829451 PMCID: PMC10565232 DOI: 10.3389/fmicb.2023.1214845] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.
Collapse
Affiliation(s)
- Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Plant Pathology, Plant Pathology, and Biotechnology Lab. and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - R.Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
10
|
Maitra S, Praharaj S, Brestic M, Sahoo RK, Sagar L, Shankar T, Palai JB, Sahoo U, Sairam M, Pramanick B, Nath S, Venugopalan VK, Skalický M, Hossain A. Rhizobium as Biotechnological Tools for Green Solutions: An Environment-Friendly Approach for Sustainable Crop Production in the Modern Era of Climate Change. Curr Microbiol 2023; 80:219. [PMID: 37204538 DOI: 10.1007/s00284-023-03317-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Modern and industrialized agriculture enhanced farm output during the last few decades, but it became possible at the cost of agricultural sustainability. Industrialized agriculture focussed only on the increase in crop productivity and the technologies involved were supply-driven, where enough synthetic chemicals were applied and natural resources were overexploited with the erosion of genetic diversity and biodiversity. Nitrogen is an essential nutrient required for plant growth and development. Even though nitrogen is available in large quantities in the atmosphere, it cannot be utilized by plants directly with the only exception of legumes which have the unique ability to fix atmospheric nitrogen and the process is known as biological nitrogen fixation (BNF). Rhizobium, a group of gram-negative soil bacteria, helps in the formation of root nodules in legumes and takes part in the BNF. The BNF has great significance in agriculture as it acts as a fertility restorer in soil. Continuous cereal-cereal cropping system, which is predominant in a major part of the world, often results in a decline in soil fertility, while legumes add nitrogen and improve the availability of other nutrients too. In the present context of the declining trend of the yield of some important crops and cropping systems, it is the need of the hour for enriching soil health to achieve agricultural sustainability, where Rhizobium can play a magnificent role. Though the role of Rhizobium in biological nitrogen fixation is well documented, their behaviour and performance in different agricultural environments need to be studied further for a better understanding. In the article, an attempt has been made to give an insight into the behaviour, performance and mode of action of different Rhizobium species and strains under versatile conditions.
Collapse
Affiliation(s)
- Sagar Maitra
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India.
| | - Subhashisa Praharaj
- Krishi Vigyan Kendra (Dr. Rajendra Prasad Central Agricultural University, Pusa, 848125, Samastipur, Bihar, India), Madhopur, West Champaran, Bihar, 845454, India
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Telangana, 500 059, India
| | - Ranjan Kumar Sahoo
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Lalichetti Sagar
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Tanmoy Shankar
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Jnana Bharati Palai
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Upasana Sahoo
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Masina Sairam
- Centurion University of Technology and Management, Paralakhemundi, Odisha, 761 211, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Suprava Nath
- Department of Agronomy, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka, 560065, India
| | - Visha Kumari Venugopalan
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Telangana, 500 059, India
| | - Milan Skalický
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Czech Republic
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
11
|
Mahreen N, Yasmin S, Asif M, Yahya M, Ejaz K, Mehboob-ur-Rahman, Yousaf S, Amin I, Zulfiqar S, Imran A, Khaliq S, Arif M. Mitigation of water scarcity with sustained growth of Rice by plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1081537. [PMID: 36755700 PMCID: PMC9900138 DOI: 10.3389/fpls.2023.1081537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 11/03/2023]
Abstract
Climate change augments the risk to food security by inducing drought stress and a drastic decline in global rice production. Plant growth-promoting bacteria (PGPB) have been known to improve plant growth under drought stress. Here in the present study, we isolated, identified, and well-characterized eight drought-tolerant bacteria from the rice rhizosphere that are tolerant to 20% PEG-8000. These strains exhibited multiple plant growth-promoting traits, i.e., 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, exopolysaccharide production, phosphate (P)-solubilizing activity (51-356 µg ml-1), indole-3 acetic acid (IAA) production (14.3-46.2 µg ml-1), and production of organic acids (72-178 µg ml-1). Inoculation of bacterial consortium (Bacillus subtilis NM-2, Brucella haematophilum NM-4, and Bacillus cereus NM-6) significantly improved seedling growth and vigor index (1009.2-1100) as compared to non-inoculated stressed plants (630-957). Through rhizoscanning, efficiency of the consortium was validated by improved root parameters such as root length (17%), diameter, and surface area (18%) of all tested genotypes as compared with respective non-inoculated stressed treatments. Furthermore, the response of consortium inoculation on three rice genotypes was positively correlated with improved plant growth and drought stress ameliorating traits by the accumulation of osmoprotectant, i.e., proline (85.8%-122%), relative water content (51%), membrane stability index (64%), and production of antioxidant enzymes to reduce oxidative damage by reactive oxygen species. A decrease in temperature and improved chlorophyll content of inoculated plants were found using infrared thermal imaging and soil plant analyzer development (SPAD), respectively. The key supporting role of inoculation toward stress responses was validated using robust techniques like infrared thermal imaging and an infrared gas analyzer. Furthermore, principal component analysis depicts the contribution of inoculation on stress responses and yield of tested rice genotypes under water stress. The integration of drought-tolerant rice genotype (NIBGE-DT02) and potential bacterial strains, i.e., NM-2, NM-4, and NM-6, can serve as an effective bioinoculant to cope with water scarcity under current alarming issues related to food security in fluctuating climate.
Collapse
Affiliation(s)
- Naima Mahreen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Khansa Ejaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Mehboob-ur-Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB) College, Pakistan Institute for Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sana Zulfiqar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| |
Collapse
|