1
|
Devi CJ, Saikia K, Mazumdar R, Das R, Bharadwaj P, Thakur D. Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13. Curr Microbiol 2025; 82:64. [PMID: 39751911 DOI: 10.1007/s00284-024-04009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.
Collapse
Affiliation(s)
- Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Fathy HM, Awad M, Alfuhaid NA, Ibrahim EDS, Moustafa MAM, El-Zayat AS. Isolation and Characterization of Bacillus Strains from Egyptian Mangroves: Exploring Their Endophytic Potential in Maize for Biological Control of Spodoptera frugiperda. BIOLOGY 2024; 13:1057. [PMID: 39765724 PMCID: PMC11673426 DOI: 10.3390/biology13121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
The widespread use of pesticides to manage Spodoptera frugiperda has led to significant challenges. This insect has developed resistance to 47 active insecticide ingredients. Therefore, endophytic entomopathogenic bacteria have been explored as an alternative pest management strategy, offering the potential to reduce reliance on chemical pesticides. The current study aims to evaluate the colonization potential of indigenous marine Bacillus strains as endophytes in maize plants and to assess their insecticidal activity against S. frugiperda. Four inoculation methods-foliar application, seed treatment, soil drenching, and a combination of all three-were used to establish the Bacillus strains as endophytes in maize plants. Our results showed that the promising native Bacillus strains exhibited both antibacterial and insecticidal effects against S. frugiperda neonates under laboratory conditions. Foliar application of Bacillus sp. Esh39 caused the highest mortality rate (65%), followed by Bacillus tequilensis R39 (60%). However, this method did not significantly enhance plant height or chlorophyll content. The potential of these native Bacillus strains warrants further investigation to improve biological control via endophytic mediation. Our findings provide valuable insights into the bacterial diversity and functionality of mangrove ecosystems and pave the way for innovative, sustainable insect management strategies.
Collapse
Affiliation(s)
- Hayam M. Fathy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (H.M.F.); (A.S.E.-Z.)
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Nawal A. Alfuhaid
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - El-Desoky S. Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Moataz A. M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Ayatollah S. El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (H.M.F.); (A.S.E.-Z.)
| |
Collapse
|
3
|
Kolanowska M. Climate change will decrease the coverage of suitable niches for Asian medicinal orchid (Bulbophyllum odoratissimum) and its main phorophyte (Pistacia weinmannifolia). Sci Rep 2024; 14:22656. [PMID: 39349626 PMCID: PMC11442911 DOI: 10.1038/s41598-024-73248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Considering the global biodiversity crisis and the growing demand for medicinal plants, it is crucial to preserve therapeutically useful herbs. From a conservation management perspective under climate change, identifying areas that enable valuable natural resources to persist in the future is crucial. Machine learning-based models are commonly used to estimate the locations of climate refugia, which are critical for the effective species conservation. The aim of this study was to assess the impact of global warming on the epiphytic medicinal orchid-Bulbophyllum odoratissimum. Given how the long-term survival of plants inhabiting shrubs and trees depends on the availability of suitable phorophyets, in this research potential range changes in reported orchid plant hosts were evaluated. According to conducted analyses, global warming will cause a decline in the coverage of the suitable niches for B. odoratissimum and its main phorophyte. The most significant habitat loss in the case of the studied orchid and Pistacia weinmannifolia will be observed in the southern part of their geographical ranges and some new niches will simultaneously become available for these plants in the northern part. Climate change will significantly increase the overlap of geographical ranges of P. weinmannifolia and the orchid. In the SSP5-8.5 scenario trees will be available for more than 56% of the orchid population. Other analyzed phorophytes, will be available for B. odoratissimum to a very reduced extent, as orchids will only utilize these species as habitats only occasionally. This study provides data on the distribution of climatic refugia of B. odoratissimum under global warming. Moreover, this is the first evaluation of the future geographical ranges for its phorophytes. According to the conducted analyses, only one of the previously reported tree species which are inhabited by B. odoratissimum, P. weinmannifolia, can serve as a phorophyte for this orchid in the future. In this study, the areas designated as suitable for the occurrence of both orchids and their phorophytes should be considered priority conservation areas for the studied medicinal plants.
Collapse
Affiliation(s)
- Marta Kolanowska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
4
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
5
|
Saikia J, Thakur D. A review on endophytic bacteria of orchids: functional roles toward synthesis of bioactive metabolites for plant growth promotion and disease biocontrol. PLANTA 2024; 260:70. [PMID: 39136763 DOI: 10.1007/s00425-024-04501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION In this review, we have discussed the untapped potential of orchid endophytic bacteria as a valuable reservoir of bioactive metabolites, offering significant contributions to plant growth promotion and disease protection in the context of sustainable agriculture. Orchidaceae is one of the broadest and most diverse flowering plant families on Earth. Although the relationship between orchids and fungi is well documented, bacterial endophytes have recently gained attention for their roles in host development, vigor, and as sources of novel bioactive compounds. These endophytes establish mutualistic relationships with orchids, influencing plant growth, mineral solubilization, nitrogen fixation, and protection from environmental stress and phytopathogens. Current research on orchid-associated bacterial endophytes is limited, presenting significant opportunities to discover new species or genetic variants that improve host fitness and stress tolerance. The potential for extracting bioactive compounds from these bacteria is considerable, and optimization strategies for their sustainable production could significantly enhance their commercial utility. This review discusses the methods used in isolating and identifying endophytic bacteria from orchids, their diversity and significance in promoting orchid growth, and the production of bioactive compounds, with an emphasis on their potential applications in sustainable agriculture and other sectors.
Collapse
Affiliation(s)
- Juri Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST) (An Autonomous R&D Institute Under DST, Govt. of India), Garchuk, Paschim Boragaon, Guwahati, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST) (An Autonomous R&D Institute Under DST, Govt. of India), Garchuk, Paschim Boragaon, Guwahati, 781035, India.
| |
Collapse
|
6
|
Wei L, Fan L, Yang C, Jin M, Osei R. Analysis of Bioactive Compounds Produced by Bacillus mojavensis ZA1 and Their Antagonistic Effect on Colletotrichum coccodes by GC-MS. Appl Biochem Biotechnol 2024; 196:4914-4933. [PMID: 37982968 DOI: 10.1007/s12010-023-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
The plant disease Colletotrichum coccodes, which lowers potato yields, poses a severe danger to the booming potato industry. Isolated plant endophytic bacteria from highland pasture can produce a variety of metabolites that lessen the risk that the pathogen C. coccodes poses to plant growth and development. Therefore, the objective of our work was to assess substances with antipathogenic properties made by the endophytic bacteria Bacillus mojavensis ZA1. Gas chromatography-mass spectrometry (GC-MS) was used in our investigation to accomplish a thorough structural elucidation of the antipathogenic compounds produced by the endophytic bacterial strain B. mojavensis ZA1. The results showed that the metabolites extracted from ethyl acetate as an extractant were the most effective in inhibiting the pathogen C. coccodes, with 60.95% inhibition. Thirty-five distinct chemicals, including acids, esters, ketones, alcohols, amino acid ammonium salts, cyclic ethers, aromatic hydrocarbons, and heterocyclic compounds, were among the metabolites that may inhibit C. coccodes. Further analysis of the chemical groups in the compound structures revealed the potential of driving groups, such as hydroxyl, carbonyl, ester, benzene, carbon-carbon double bonds, and carbon rings, that prevent C. coccodes from performing its function. This study opens up new opportunities for plant protection programs by demonstrating that natural chemicals produced by B. mojavensis ZA1 can be used as candidates for cutting-edge plant disease management treatments.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Lijuan Fan
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China.
| | - Mengjun Jin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
7
|
Li X, Lang D, Wang J, Zhang W, Zhang X. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27362-x. [PMID: 37145360 DOI: 10.1007/s11356-023-27362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Environmental challenges like salinity, drought, fungal phytopathogens, and pesticides directly or/and indirectly influence the environment and agricultural yields. Certain beneficial endophytic Streptomyces sp. can ameliorate environmental stresses and be utilized as crop growth promoters under adverse conditions. Herein, Streptomyces dioscori SF1 (SF1) isolated from seeds of Glycyrrhiza uralensis tolerated fungal phytopathogens and abiotic stresses (drought, salt, and acid base). Strain SF1 showed multifarious plant growth promotion characteristics, including the production of indole acetic acid (IAA), ammonia, siderophores, ACC deaminase, extracellular enzymes, the ability of potassium solubilization, and nitrogen fixation. The dual plate assay showed that strain SF1 inhibited 63.21 ± 1.53%, 64.84 ± 1.35%, and 74.19 ± 2.88% of Rhizoctonia solani, Fusarium acuminatum, and Sclerotinia sclerotiorum, respectively. The detached root assays showed that strain SF1 significantly reduced the number of rotten sliced roots, and the biological control effect on sliced roots of Angelica sinensis, Astragalus membranaceus, and Codonopsis pilosula was 93.33%, 86.67%, and 73.33%, respectively. Furthermore, the strain SF1 significantly increased the growth parameters and biochemical indicators of adversity in G. uralensis seedlings under drought and/or salt conditions, including radicle length and diameter, hypocotyl length and diameter, dry weight, seedling vigor index, antioxidant enzyme activity, and non-enzymatic antioxidant content. In conclusion, the strain SF1 can be used to develop environmental protection biological control agents, improve the anti-disease activity of plants, and promote plant growth in salinity soil within arid and semi-arid regions.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, China.
| |
Collapse
|