1
|
Girard T, Basile-Doelsch I, Fochesato S, Duvivier A, Doelsch E, Heulin T, Achouak W. Pseudomonas brassicacearum-Induced Biotite Weathering: Role of Iron Homeostasis and Two Siderophores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7973-7982. [PMID: 40248958 DOI: 10.1021/acs.est.4c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Soil bacteria play a crucial role in enhancing mineral weathering, thereby facilitating the release of mineral structural ions into the environment. Pseudomonas brassicacearum NFM421, a root-isolated bacterium, produces two different siderophores in the form of pyoverdine and ornicorrugatin. We studied the interaction between this bacterium and biotite─a natural iron-bearing phyllosilicate─to assess the factors governing siderophore-mediated biogenic weathering. We demonstrated that bacterial Fe is an essential factor driving biotite weathering. Our findings suggested that the lipopeptidic siderophore ornicorrugatin might be more effective than pyoverdine as an iron-bearing mineral weathering agent. This secondary siderophore's production is maintained even when the iron requirement of the bacteria is fulfilled. Moreover, we observed that another mechanism requiring direct physical contact might enable P. brassicacearum to acquire iron structural ions from soil minerals.
Collapse
Affiliation(s)
- Tom Girard
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
- CNRS, IRD, INRAE, CEREGE, ITEM, Aix Marseille Université, F-13545 Aix-en-Provence, France
| | | | - Sylvain Fochesato
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| | - Adrien Duvivier
- CNRS, IRD, INRAE, CEREGE, ITEM, Aix Marseille Université, F-13545 Aix-en-Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et Risque, CIRAD, University of Montpellier, F-34398 Montpellier, France
| | - Thierry Heulin
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| | - Wafa Achouak
- CEA, CNRS, BIAM, LEMiRE, ITEM, Aix Marseille Université, F-13115 Saint Paul-Lez-Durance, France
| |
Collapse
|
2
|
Shi J, Zhou Y, Yang S, Xue Y, Wang Y, Hu H, Liu Y. The key metabolic pathway of roots and leaves responses in Arachis hypogaea under Al toxicity stress. BMC PLANT BIOLOGY 2025; 25:439. [PMID: 40189501 PMCID: PMC11974018 DOI: 10.1186/s12870-025-06460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Aluminum (Al) toxicity inhibits plant growth and alters gene expression and metabolite profiles. However, the molecular mechanisms underlying the effects of Al toxicity on peanut plants remain unclear. Transcriptome and metabolome analyses were conducted to investigate the responses of peanut leaves and roots to Al toxicity. RESULTS Al toxicity significantly inhibited peanut growth, disrupted antioxidant enzyme systems in roots and leaves, and impaired nutrient absorption. Under Al toxicity stress, the content of indole-3-acetic acid-aspartate (IAA-Asp) decreased by 23.94% in leaves but increased by 12.91% in roots. Methyl jasmonate (MeJA) levels in leaves increased dramatically by 2642.86%. Methyl salicylate (MeSA) content in leaves and roots increased significantly by 140.00% and 472.22%, respectively. Conversely, isopentenyl adenosine (IPA) content decreased by 78.95% in leaves and 20.66% in roots. Transcriptome analysis identified 5831 differentially expressed genes (DEGs) in leaves and 6405 DEGs in roots, whereas metabolomics analysis revealed 210 differentially accumulated metabolites (DAMs) in leaves and 240 DAMs in roots. Under Al toxicity stress, both leaves and roots were significantly enriched in the "linoleic acid metabolism" pathway. Genes such as lipoxygenase LOX1-5 and LOX2S were differentially expressed, and metabolites, including linoleic acid and its oxidized derivatives, were differentially accumulated, mitigating oxidative stress. CONCLUSIONS This study elaborates on the potential complex physiological and molecular mechanisms of peanuts under aluminum toxicity stress, and highlights the importance of linoleic acid metabolism in coping with aluminum toxicity. These findings enhance our understanding of the impact of aluminum toxicity on peanut development and the response of key metabolic pathways, providing potential molecular targets for genetic engineering to improve crop resistance to aluminum stress.
Collapse
Affiliation(s)
- Jianning Shi
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yishuang Zhou
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaoxia Yang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanyan Wang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hanqiao Hu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ying Liu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Allam G, Sakariyahu SK, McDowell T, Pitambar TA, Papadopoulos Y, Bernards MA, Hannoufa A. miR156 Is a Negative Regulator of Aluminum Response in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2025; 14:958. [PMID: 40265915 PMCID: PMC11945701 DOI: 10.3390/plants14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aluminum (Al) toxicity is a serious environmental constraint facing crop production in acidic soils, primarily due to the oxidative damage it causes to plant tissues. Alfalfa (Medicago sativa), a globally important forage crop, is highly susceptible to Al-induced stress, necessitating the development of Al-tolerant cultivars for sustainable forage production. In this study, we investigated the regulatory role of miR156 in Al stress response in alfalfa. Transcript analysis revealed significant downregulation of miR156 in alfalfa roots after 8 h of Al exposure, suggesting a negative role for miR156 in response to Al. To further investigate the role of miR156 in regulating agronomic traits and alfalfa's Al tolerance, we utilized the short tandem target mimic (STTM) method to silence miR156 in alfalfa (MsSTTM156), which led to an upregulation of SQUAMOSA PROMOTER BINDING-LIKE (SPL) target genes, albeit with variable miR156 dose-dependent effects across different transgenic genotypes. Morphological characterization of MsSTTM156 plants revealed significant negative changes in root architecture, root and shoot biomass, as well as flowering time. Under Al stress, overexpression of miR156 in alfalfa (MsmiR156OE) resulted in stunted growth and reduced biomass, whereas moderate MsmiR156 silencing enhanced root dry weight and increased stem basal diameter. In contrast, MsmiR156OE reduced plant height, stem basal diameter, shoot branching, and overall biomass under Al stress conditions. At the molecular level, silencing miR156 modulated the transcription of cell wall-related genes linked to Al tolerance, such as polygalacturonase 1(MsPG1) and polygalacturonase 4 (MsPG4). Furthermore, miR156 influenced the expression of indole-3-acetic acid (IAA) transport-related genes auxin transporter-like protein (MsAUX1) and auxin efflux carrier components 2 (MsPIN2), with MsSTTM156 and MsmiR156OE plants showing lower and higher transcript levels, respectively, upon Al exposure. These findings reveal the multi-layered role of miR156 in mediating Al tolerance, providing valuable insights into the genetic strategies that regulate response to Al stress in alfalfa.
Collapse
Affiliation(s)
- Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Solihu K. Sakariyahu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
| | - Tevon A. Pitambar
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | | | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| |
Collapse
|
4
|
Alves JDS, Menguer PK, Lima-Melo Y, Fiorentini VHR, Ponte LR, Olsson RV, Sasso VM, De Palma N, Tabaldi LA, Brunetto G, Giehl RFH, Margis-Pinheiro M, Ricachenevsky FK. Aluminum alleviates iron deficiency chlorosis by interfering with phosphorus homeostasis in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109427. [PMID: 39893947 DOI: 10.1016/j.plaphy.2024.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Rice (Oryza sativa L.) is a staple food for more than half of the human population. Rice plants are cultivated in several different environments, and face various abiotic stresses, including nutritional imbalance in soils. The ionome, the inorganic composition of an organism, is known to be tightly regulated, as changes in concentration of one element affect concentrations of others. Iron (Fe) is an essential element that is involved in redox reactions, nitrogen metabolism and chlorophyll synthesis. The hallmark of Fe deficiency in plants is leaf chlorosis, a phenotype known to be alleviated by deficiencies of other elements, such as phosphorus (P). Aluminum (Al) is abundant in soils and limits plant growth in acidic soils. Despite its well-established detrimental effects, Al has been proposed to have a positive effect on growth for some species, but little is known about this phenomenon. Here we aim to understand whether Al affects Fe homeostasis in rice. We found that Al alleviated Fe deficiency-induced chlorosis. +Al-Fe treatment decreased expression of Fe deficiency marker genes and partially recovered photosynthesis. We also observed that Al induced expression of a P deficiency marker gene, and addition of excess P to nutrient solution reversed effects of Al on chlorosis. Our data show that Al alleviates Fe deficiency-induced chlorosis, and suggests that this occurs indirectly by inducing P deficiency in leaves.
Collapse
Affiliation(s)
| | | | - Yugo Lima-Melo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Lucas Roani Ponte
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Vic Martini Sasso
- Departamento de Biologia, Universidade Federal de Santa Maria, Brazil
| | - Nicolás De Palma
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Gustavo Brunetto
- Departamento de Biologia, Universidade Federal de Santa Maria, Brazil
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Márcia Margis-Pinheiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, Brazil
| | - Felipe Klein Ricachenevsky
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Coker H, Denvir AC, Robertson IJ, Shackelford CEB, Li WH, Lin CW, Watters RM, Sparks DL, Smith AP, Howe JA. Aeroponic Technology for Accelerated Weathering of Extraterrestrial Regolith to Extract Plant Essential Nutrients and Generate Arable Soils. ACS EARTH & SPACE CHEMISTRY 2025; 9:337-348. [PMID: 40008137 PMCID: PMC11849031 DOI: 10.1021/acsearthspacechem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Advancements in off-world food and fiber production should seek to utilize regolith as a source of nutrients and prepare it for use as a solid plant growth substrate. Towards this goal, aeroponic biowaste streams containing both inorganic nutrients and root system efflux from plants provide an opportunity for accelerated weathering and enhancement of extraterrestrial soils. To test this hypothesis, an aeroponic system was built that contained Martian simulant (Mars Mojave Simulant-2; MMS-2), inert sand, and a no-filter control to evaluate the in-line filters for simultaneous mineral weathering and recycling of biowastes from wheat. The growth performance of wheat in aeroponics was highly productive across all treatments. After inundation with biowastes from the aeroponic system growing wheat for 40 days, MMS-2 sorbed P and K and released Al, B, Ca, Fe, Mn, Na, and S into the nutrient solution. Generated plant biowaste was mixed into MMS-2 and sand treatments, which increased the extractable Fe, K, Mg, P, and S in MMS-2. Substrate chemical properties were quantified (e.g., total C and N, total and extractable elements, pH, EC, particle size, and P species). Augmentation of MMS-2 with aeroponic biowastes followed by amendment with plant residue greatly improved wheat growth compared with the unmodified MMS-2, which resulted in plant death. This technology expands lunar/Martian base agriculture by offering a means to acquire nutrients from weathered regolith while simultaneously improving the fertility of extraterrestrial soils.
Collapse
Affiliation(s)
- Harrison
R. Coker
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Aenghus C. Denvir
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Isaiah J. Robertson
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Caleb E. B. Shackelford
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Wen-hui Li
- Department
of Soil and Environmental Sciences, National
Chung-Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-wei Lin
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Rachel M. Watters
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Donald L. Sparks
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - A. Peyton Smith
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| | - Julie A. Howe
- Department
of Soil and Crop Sciences, Texas A&M
University and Texas A&M AgriLife, 2474 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Martín-Cardoso H, San Segundo B. Impact of Nutrient Stress on Plant Disease Resistance. Int J Mol Sci 2025; 26:1780. [PMID: 40004243 PMCID: PMC11855198 DOI: 10.3390/ijms26041780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Plants are constantly exposed to abiotic and biotic stresses that seriously affect crop yield and quality. A coordinated regulation of plant responses to combined abiotic/biotic stresses requires crosstalk between signaling pathways initiated by each stressor. Interconnected signaling pathways further finetune plant stress responses and allow the plant to respond to such stresses effectively. The plant nutritional status might influence disease resistance by strengthening or weakening plant immune responses, as well as through modulation of the pathogenicity program in the pathogen. Here, we discuss advances in our understanding of interactions between nutrient stress, deficiency or excess, and immune signaling pathways in the context of current agricultural practices. The introduction of chemical fertilizers and pesticides was a major component of the Green Revolution initiated in the 1960s that greatly boosted crop production. However, the massive application of agrochemicals also has adverse consequences on the environment and animal/human health. Therefore, an in-depth understanding of the connections between stress caused by overfertilization (or low bioavailability of nutrients) and immune responses is a timely and novel field of research with important implications for disease control in crop species. Optimizing nutrient management practices tailored to specific environmental conditions will be crucial in maximizing crop production using environmentally friendly systems.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
7
|
Wu X, Khan S, Qi Y, Zhang C, Anwar S, Yin L, Huang J. Metabolic and Nutritional Responses of Contrasting Aluminium-Tolerant Banana Genotypes Under Al Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:385. [PMID: 39942947 PMCID: PMC11820201 DOI: 10.3390/plants14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Aluminum (Al) toxicity is a major constraint to crop productivity in acidic soils, frequently encountered in banana-growing regions. This study investigates physiological and biochemical responses to Al stress in two Cavendish banana genotypes, Baodao and Baxi (Musa acuminata L.), which exhibit contrasting levels of Al tolerance. Banana plantlets were grown hydroponically under three AlCl3 concentrations (0, 100, and 500 μM) for 24, 48, and 72 h. Root elongation was progressively inhibited with increasing Al concentrations, with Baodao showing greater inhibition than Baxi. Al primarily accumulated in roots and displayed genotype-specific distribution patterns: Baodao concentrated more Al in root tips, suggesting lower exclusion efficiency. In contrast, Baxi, the Al-tolerant genotype, translocated Al from roots to shoots more effectively, indicating potential sequestration mechanisms in less sensitive tissues. Al stress influenced enzyme activities, with Baxi exhibiting higher phosphoenolpyruvate carboxylase and citrate synthase activities at 100 µM Al, while both genotypes showed similar reductions at 500 µM. Baodao experienced more pronounced reductions in H+-ATPase activity. At 100 µM Al, Baxi retained higher levels of key nutrients (P, Zn, Mg, Mn, Fe, K, and B) in essential tissues than Baodao. However, nutrient levels were reduced in both genotypes at 500 µM Al. These findings highlight Baxi's superior resilience under Al stress, making it a suitable genotype for cultivation and breeding in acidic soils.
Collapse
Affiliation(s)
- Xinran Wu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (X.W.); (S.K.); (Y.Q.)
| | - Shahbaz Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (X.W.); (S.K.); (Y.Q.)
- Directorate of Agriculture Research (DAR) Uthal, Labella 69090, Balochistan, Pakistan
| | - Yucheng Qi
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (X.W.); (S.K.); (Y.Q.)
| | - Chuanling Zhang
- School of Life Sciences, Hainan University, Haikou 570228, China;
- One Health Institute, Hainan University, Haikou 570228, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan;
| | - Liyan Yin
- School of Life Sciences, Hainan University, Haikou 570228, China;
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jiaquan Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (X.W.); (S.K.); (Y.Q.)
| |
Collapse
|
8
|
Mladenova E, Voyslavov T, Bakardzhiyski I, Karadjova I. From the Soil to the Wine-Elements' Migration in Monovarietal Bulgarian Wines. Molecules 2025; 30:475. [PMID: 39942581 PMCID: PMC11820015 DOI: 10.3390/molecules30030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Bulgarian wines are renowned worldwide and serve as a symbol of the country. However, ensuring wine authenticity and establishing reliable methods for its assessment are critical challenges in wine quality control. This study investigates the migration of chemical elements within the soil/grape/wine system and utilizes the findings to develop a method for identifying specific elements capable of distinguishing the geographical origin of wine. Additionally, it explores the potential to determine its botanical origin. Thirty monovarietal Bulgarian wines, specifically produced for this study with precisely known geographical and botanical origins, were analyzed for 20 chemical elements. These included macroelements such as Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, and Zn, as well as microelements like As, Cd, Co, Cr, Li, Ni, and Pb. The study encompassed white wines from Chardonnay, Muscat Ottonel, Sauvignon Blanc, Tamyanka, and Viognier varieties, as well as red wines from Egiodola, Broad-Leaved Melnik, Cabernet, Cabernet Franc, Cabernet Sauvignon, Marselan, Melnik, Merlot, Pinot Noir, and Syrah. The chemical composition was determined in soil extracts (using acetate and EDTA extract to represent the bioavailable fraction), vine leaves, primary musts, and raw wines before clarification and stabilization. Statistically significant correlation coefficients were calculated for the soil/leaves, soil/must, and must/wine systems, enabling an analysis of the migration of chemical elements from soil to wine and the concentration changes throughout the process. The results identified elemental descriptors capable of indicating the geographical origin of wine.
Collapse
Affiliation(s)
- Elisaveta Mladenova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, James Bourchier Boulevard, 1164 Sofia, Bulgaria; (T.V.); (I.K.)
| | - Tsvetomil Voyslavov
- Faculty of Chemistry and Pharmacy, Sofia University, 1, James Bourchier Boulevard, 1164 Sofia, Bulgaria; (T.V.); (I.K.)
| | - Ivan Bakardzhiyski
- Technological Faculty, University of Food Technologies, 26, Maritza Boulevard, 4002 Plovdiv, Bulgaria;
| | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, James Bourchier Boulevard, 1164 Sofia, Bulgaria; (T.V.); (I.K.)
| |
Collapse
|
9
|
Puntel RT, Stefanello R, Jesus da Silva Garcia W, Strazzabosco Dorneles L. Aluminum and UV-C light on seed germination and initial growth of white oats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:989-998. [PMID: 39302011 DOI: 10.1080/15287394.2024.2405720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aluminum (Al) may be beneficial to crops, but in excess becomes detrimental to the germination and initial development of seedlings. The main determining indicators are the type of crop and exposure duration. The aim of this study was to examine the influence of Al and of UV-C light on the germination and initial growth of white oats. Seeds were sown on germitest paper in a solution of 100, 200, 300, 400, or 500 mg/L of aluminum chloride and kept in a germination chamber at 20°C for a 12-hr photoperiod. Germination and seedling growth parameters were determined after 5 and 10 days. The seeds were also exposed to two doses of UV-C (0.85 and 3.42 kJ m-2) under aluminum chloride stress (200 mg/L). Data demonstrated that treatment with aluminum chloride significantly decrease in germination at 200 mg/L and total seedling length at 100 mg/L. Exposure of seeds to UV-C light under excess Al (200 mg/L) did not show a significant effect on germination and growth compared to control (non-irradiated). Results indicated that exposure to high concentration of Al in the medium adversely altered germination and initial growth of white oat seedlings. Although UV-C light alone was not detrimental to the germination process, treatment with UV-C light also failed to mitigate the toxic effects of Al.
Collapse
Affiliation(s)
- Raissa Tainá Puntel
- Department of Agronomy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Raquel Stefanello
- Department of Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Lucio Strazzabosco Dorneles
- Laboratory of Nanostructured Magnetic Materials, Department of Physics, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
10
|
Yan J, Zhu W, Wu D, Chen X, Yang S, Xue Y, Liu Y, Liu Y. Mechanisms of Aluminum Toxicity Impacting Root Growth in Shatian Pomelo. Int J Mol Sci 2024; 25:13454. [PMID: 39769219 PMCID: PMC11676325 DOI: 10.3390/ijms252413454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Aluminum (Al) toxicity in acidic soils poses significant challenges to crop growth and development. However, the response mechanism of Shatian pomelo (Citrus maxima 'Shatian Yu') roots to Al toxicity remains poorly understood. This study employed root phenotype analysis, physiological response index measurement, root transcriptome analysis, and quantitative PCR (qPCR) validation to investigate the effects of Al toxicity on Shatian pomelo roots. The findings revealed that Al toxicity inhibited root growth and development, resulting in reduced root biomass, total root length, total root surface area, root volume, average root diameter, and root tip count. Antioxidant enzyme activities (peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activity) and soluble protein content increased with rising Al toxicity, whereas malondialdehyde content initially increased and then declined. Additionally, Al toxicity stress increased Al (1439.25%) content and decreased boron (B, 50.64%), magnesium (Mg, 42.04%), calcium (Ca, 46.02%), manganese (Mn, 86.75%), and iron (Fe, 69.92%) levels in the roots. RNA sequencing (RNA-seq) analysis identified 3855 differentially expressed genes (DEGs) between 0 mmol/L Al (control) and 4 mmol/L Al (Al toxicity) concentrations, with 1457 genes up-regulated and 2398 down-regulated, indicating a complex molecular regulatory response. The qPCR results further validated these findings. This study elucidates the response mechanisms of Shatian pomelo roots to Al toxicity stress, providing insights into the regulatory pathways involved. The findings offer valuable reference points for breeding Al-resistant Shatian pomelo varieties. The results of this study provide important genetic tools and technical support for the screening and breeding of highly resistant varieties of Shatian pomelo. On the one hand, by detecting the key indexes (such as antioxidant enzyme activity and nutrient absorption capacity) of Shatian pomelo, varieties with excellent anti-Al toxicity characteristics can be selected. On the other hand, the Al-resistant genes identified in this study, such as TFM1 and ALERTFA0, can be used to develop molecular markers, assisted marker breeding, or transgenic breeding to accelerate the breeding process of Al-resistant strains.
Collapse
Affiliation(s)
- Jingfu Yan
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Wenbo Zhu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Dongshen Wu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Xinya Chen
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Shaoxia Yang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| | - Ying Liu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810010, China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810010, China
| | - Ying Liu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (D.W.); (X.C.)
| |
Collapse
|
11
|
Liu G, Li D, Mai H, Lin X, Lu X, Chen K, Wang R, Riaz M, Tian J, Liang C. GmSTOP1-3 regulates flavonoid synthesis to reduce ROS accumulation and enhance aluminum tolerance in soybean. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136074. [PMID: 39383698 DOI: 10.1016/j.jhazmat.2024.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Aluminum (Al) toxicity is a significant limiting factor for crop production in acid soils. The functions and regulatory mechanisms of transcription factor STOP1 (Sensitive to Proton Rhizotoxicity 1) family genes in Al-tolerance have been widely studied in many plant species, except for soybean. Here, expression of GmSTOP1-3 was significantly enhanced by Al stress in soybean roots. Overexpression of GmSTOP1-3 resulted in enhanced root elongation and decreased Al content, which was accompanied by increased antioxidant capacity under Al treatment. Furthermore, RNA-seq identified 498 downstream genes of GmSTOP1-3, including genes involved in flavonoid biosynthesis. Among them, the expression of chalcone synthase (GmCHS) and isoflavone synthase (GmIFS) were highly enhanced by GmSTOP1-3 overexpression. Further quantitative flavonoid metabolome analysis showed that overexpression of GmSTOP1-3 significantly increased the content of naringenin chalcone, naringenin, and genistein in soybean roots under Al treatment, which positively correlated with the expression level of the genes relative to flavonoid biosynthesis. Notably, genistein had a significant positive correlation with the expression levels of GmIFS. Combination of Dual Luciferase Complementation (LUC) and Electrophoretic Mobility Shift Assays (EMSA) revealed that GmSTOP1-3 directly bound to the promoters of GmCHS/GmIFS and activated both genes' transcription. Taken together, these results suggest that GmSTOP1-3 enhances soybean Al tolerance partially through regulating the flavonoid synthesis.
Collapse
Affiliation(s)
- Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dongqian Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xiaoying Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Ruotong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
12
|
Mu SY, Yang YT, Qu XY, Wang FF, Ma FF, Ding ZN, Ye LP, Zhang YL, Zhang JJ, Lyu MM, Li SB, Cao GQ, Wu C, Ding GC, Chen Y. A potential role of a special type of abortive seeds in Cunninghamia lanceolata: promoting the growth of healthy seedlings in active aluminum ions-rich soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1482355. [PMID: 39582627 PMCID: PMC11581864 DOI: 10.3389/fpls.2024.1482355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024]
Abstract
Background and aims "Astringent seed" is a type of abortive seed frequently observed in Chinese fir (Cunninghamia lanceolata). It is widely recognized but poorly understood for its underlying causes. This study investigates the potential of astringent seeds to alleviate the toxic effects of active aluminum ions. Methods This study involved treating seeds and seedlings with two distinct concentrations of astringent seeds water extracts under the aluminum ion stress. Then the germination of seeds and growth of seedlings were evaluated and compared. Results Under aluminum stress, both seed germination and seedling growth were notably inhibited. Treatment with a low-concentration of the extract significantly alleviated this inhibition. Root elongation in the seedlings increased by 36.95% compared to the control group, and the aluminum ion accumulation at the root tips was reduced by 38.89% relative to the aluminum-stressed group. This treatment also normalized the levels of malondialdehyde (MDA) in the roots and leaves, enhanced the activities of antioxidative enzymes such as superoxide dismutase (SOD) and catalase (CAT), and restored the levels of endogenous hormones including gibberellin (GA3), indole-3-acetic acid (IAA), methyl jasmonate (Ja-ME), and abscisic acid (ABA). Furthermore, the low-concentration of the extract positively impacted the disorganized chloroplast structures. In contrast, a high-concentration of the extract failed to revert most of these stress indicators. Conclusion Low concentrations of astringent seed water extract effectively alleviate the inhibitory effects of aluminum ions on seed and seedling. This implies that in natural environments, the proximity of healthy seeds to astringent seeds could potentially enhance their growth.
Collapse
Affiliation(s)
- Shi-Yan Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Ting Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Yu Qu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang-Fang Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang-Fang Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen-Ning Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling-Peng Ye
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Ling Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Jun Zhang
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Meng Lyu
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shu-Bin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang-Qiu Cao
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Wu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Chang Ding
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Chen
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
14
|
Li X, Hu N, Huang X, Josy Karel NN, He Y, Tang H, Li Y, Xu J. Morphological, physiological, and transcriptomic analyses indicate that cell wall properties and antioxidant processes are potential targets for improving the aluminium tolerance of broad beans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109164. [PMID: 39357198 DOI: 10.1016/j.plaphy.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Aluminium (Al) stress is the second-leading abiotic stress on crops. An improved understanding of the response mechanisms of plants to Al stress will provide scientific guidance for enhancing the crops' tolerance to Al stress. In this study, Al stress (50-200 μM AlCl3) caused visible damage to broad bean (Vicia faba L.) roots rather than shoots, which was attributed to Al accumulation and distribution in different tissues. Root transcriptomic analysis revealed that Al stress altered cell wall properties by downregulating lignin synthesis and several xyloglucan endotransglucosylase/hydrolase-, expansin- and peroxidase (POD)-encoding genes, which likely weakened cell extensibility to inhibit root growth. Additionally, Al stress impeded reactive oxygen species scavenging pathways involving POD activity and flavonoid biosynthesis, leading to oxidative damage characterised by malondialdehyde accumulation. These results indicate that optimising cell wall properties and/or enhancing antioxidant processes are crucial for alleviating Al toxicity to broad beans. Interestingly, exogenous application (500 and 1000 μM) of the flavonoid apigenin effectively alleviated Al toxicity in broad bean roots by partially improving the total antioxidant capacity of the roots. This study contributes to understanding the interaction between plants and Al and provides new strategies to alleviate Al toxicity in crops.
Collapse
Affiliation(s)
- Xiong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| | - Na Hu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| | - Xumei Huang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Ngueuyim Nono Josy Karel
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhua He
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Haisheng Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Yanshuang Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Ecology and Environment, Yunnan University, Kunming, 650500, China
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China.
| |
Collapse
|
15
|
Petipas RH, Peru C, Parks JM, Friesen ML, Jack CN. Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils. Can J Microbiol 2024; 70:482-491. [PMID: 39110997 DOI: 10.1139/cjm-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (Tritcum aestivum L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Cassidy Peru
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Janice M Parks
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Chandra N Jack
- Department of Biology, Clark University, Worchester, MA 01610, USA
| |
Collapse
|
16
|
Sørensen MK, Lemming C, Jensen ON, Nielsen NC. Soil Analysis by Mobile Multinuclear NMR: Quantification of Phosphorus, Aluminum, and Sodium. Anal Chem 2024; 96:17086-17091. [PMID: 39413773 DOI: 10.1021/acs.analchem.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Soil analyses are essential to ensure economically and environmentally sustainable crop production while maintaining the soil fertile for future use. Unfortunately, common soil analyses may be highly demanding in terms of time, chemicals, and costs. This applies, in particular, when total quantities of elements are desired. As an easy and fast alternative without consumption of chemicals, we here present mobile 31P, 27Al, 23Na, and 1H NMR for quantification of phosphorus, aluminum, and sodium contents in soil. This enables accurate on-site analysis and is suitable for direct measurement on fresh, undried soil samples since the water content is quantified as well. For demonstration, 40 various Danish agricultural soil samples were analyzed using a mobile NMR sensor, and the results were compared with external laboratory analyses for P, Al, and Na. The laboratory analyses were conducted with ICP-OES after four-acid digestion, which additionally were compared with aqua regia digestion, showing inadequacies in the performance of the latter. Good agreement between NMR and laboratory analyses (correlation coefficients 0.91 for P, 0.98 for Al, and 0.90 for Na, in the concentration ranges 250-1200 ppm P, 1.4-5% Al, and 0.3-1% Na) were obtained with high accuracy using NMR measuring times of 20 min to 1 h for P, 4-12 min for Al, and 6-20 min for Na. Additionally, the NMR measurements provide information on the amount of P associated with paramagnetic centers (e.g., Fe3+). Good correlations were also observed to other parameters such as the clay content, which is predictable from the intensity of the more fast-relaxing of three 27Al NMR components.
Collapse
Affiliation(s)
- Morten K Sørensen
- NanoNord A/S, Skjernvej 3, DK-9220 Aalborg Ø, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Camilla Lemming
- SEGES Innovation P/S, Agro Food Park 15, DK-8200 Aarhus N, Denmark
| | - Ole N Jensen
- NanoNord A/S, Skjernvej 3, DK-9220 Aalborg Ø, Denmark
| | | |
Collapse
|
17
|
Huang L, Li H, Luo Y, Shi J, Kong L, Teng W. Exogenous silicon alleviates aluminum stress in Eucalyptus species by enhancing the antioxidant capacity and improving plant growth and tolerance quality. BMC PLANT BIOLOGY 2024; 24:997. [PMID: 39443879 PMCID: PMC11515708 DOI: 10.1186/s12870-024-05723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND As an efficient and high-quality additive in agriculture and forestry production, silicon (Si) plays an important role in alleviating heavy metal stress and improving plant growth. However, the alleviating effect of aluminum (Al) toxicity by Si in Eucalyptus is still incomplete. RESULTS Here, a study was conducted using two Al concentrations (0 and 4.5 mM) with four Si concentrations (0, 0.5, 1, and 1.5 mM) to investigate plant growth, tolerance and antioxidant defense system in four Eucalyptus species (Eucalyptus tereticornis, Eucalyptus urophylla, Eucalyptus grandis, and Eucalyptus urophylla × Eucalyptus grandis). The results showed that the stress induced by 4.5 mM Al increased oxidative damage, disturbed the balance of enzymatic and non-enzymatic antioxidant systems, and negatively affected plant growth and tolerance quality in the four Eucalyptus species. However, the addition of 0.5 mM and 1 mM Si alleviated the effects of Al toxicity on plant growth and improved plant growth quality by strengthening stress tolerance. Besides, adding Si significantly facilitated the synergistic action of enzymatic and non-enzymatic antioxidant defenses, increased the removal of reactive oxygen species, reduced lipid peroxidation, and oxidative stress, and promoted the phytoremediation rate of the four Eucalyptus species by 18.7 ~ 34.8% compared to that in the absence of Si. CONCLUSIONS Silicon can alleviate the effect of Al toxicity by enhancing the antioxidant capacity and improving plant growth and tolerance quality. Hence, the application of Si is an effective method for the phytoremediation of Eucalyptus plantations in southern China.
Collapse
Affiliation(s)
- Linjuan Huang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Hongying Li
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yishan Luo
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jingzhong Shi
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Le Kong
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Weichao Teng
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
- Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
- College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Yazicioglu H, Hocaoglu-Ozyigit A, Ucar B, Yolcu S, Yalcin IE, Suner S, Ozyigit II. Physiological alterations and genotoxic damage under combined aluminum and cadmium treatments in Bryophyllum daigremontianum clones. Mol Biol Rep 2024; 51:1019. [PMID: 39331170 DOI: 10.1007/s11033-024-09936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Cadmium (Cd) is one of the most important stress factors in plants, with its high mobility in soils, ease of uptake by plants and toxicity at low concentrations. Aluminum (Al) is another phytotoxic metal, the accumulation of which is a crucial agricultural complication for plants, especially in acidic soils. METHODS AND RESULTS In this study, Bryophyllum daigremontianum clone plantlets were obtained from bulbiferous spurs of a mother plant and separated into four different groups and watered with Hoagland solution and mixtures containing 0, 50, 100, and 200 µM of AlCl3 and CdCl2 each for 75 days. Control groups were maintained under the same conditions without Al and Cd treatment. To simulate acidic soil conditions typical of environments where Al toxicity is prevalent, the soil pH was adjusted to 4.5 by spraying the sulphuric acid (0.2%) with 2-day intervals after each irrigation day. After harvesting, growth parameters such as shoot length and thickness, root, shoot and leaf fresh and dry weights were measured, along with physiological parameters like mineral nutrient status, total protein, and photosynthetic pigment concentrations (chlorophyll a, b, a/b, total chlorophyll, and carotenoid) in both control and experimental groups of B. daigremontianum clones. In response to Al and Cd applications, the plant height, shoot thickness and carotenoid levels were declined, whereas the increments were found in leaf/shoot/root fresh weight, root dry weight, and total protein content. Moreover, differences in genomic alterations were investigated using 21 ISSR and 19 RAPD markers, which both have been used extensively as genetic markers to specify phylogenetic relationships among different cultivars as well as stress-dependent genetic alterations. RAPD primers were used due to their arbitrary sequences and the unknown genome sequence of the plant material used. In contrast, ISSR primers were preferred for a genome-wide genotoxic effect scan via non-arbitrary and more common genetic markers. Distinct types of band polymorphisms detected via RAPD and ISSR markers include band loss, and new band formation under a combination of Al and Cd stress. 17 ISSR and 14 RAPD primers generated clear electrophoretic bands. CONCLUSION The study revealed that combined application of Al and Cd affect B. daigremontianum clones in terms of growth, physiology and genotoxicity related to the increasing concentrations.
Collapse
Affiliation(s)
- Hulya Yazicioglu
- Institute of Pure and Applied Sciences, Marmara University, Istanbul, 34722, Türkiye
| | | | - Bihter Ucar
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Türkiye
| | - Salim Suner
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Ibrahim Ilker Ozyigit
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye.
- Environmental Issues Application and Research Center, Marmara University, Istanbul, 34722, Türkiye.
| |
Collapse
|
19
|
Liu Y, Xue L, Wang Z, Che X, Deng L, Xie W, Guo W. Comparative analysis of element and hormone content in zygotic embryos of Pinus elliottii and P. elliottii × P. caribaea. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154359. [PMID: 39332320 DOI: 10.1016/j.jplph.2024.154359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Somatic embryogenesis is a crucial method for achieving clonal forestry in conifers. Understanding the development of zygotic embryos is essential not only for enhancing the efficiency and quality of somatic embryogenesis, but also for advancing forestry breeding programs. This study investigated dynamic changes of element and hormone contents during ZE development of Pinus elliottii and its hybrid P. elliottii × P. caribaea. Significant differences in embryo development speed among different clones were observed. Elemental analysis was conducted using inductively coupled plasma mass spectrometry (ICP-MS) and identified 68 elements, including major, minor, and beneficial elements. In both species, the contents of potassium (K), calcium (Ca), iron (Fe), boron (B) and five beneficial elements decreased during early ZE development, while phosphorus (P) and copper (Cu) increased. Significantly higher levels of K, Ca and Fe at the initial stage, and sulfur (S) and nickel (Ni) decreased at later stages were detected in P. elliottii than in the hybrid. For the other elements, except for very few significant differences at certain stages, most differences between the two species did not reach a significant level. The contents of endogenous hormones were determined and different accumulation patterns were detected in most hormones between the two species, except abscisic acid (ABA) which simultaneously decreased with developments by stage 8. Significant differences were found in indole-3-acetic acid (IAA) contents at most stages between species, while higher levels of total cytokinin (CK) at each stage were detected in the hybrid in comparison with those in P. elliottii. As a result, lower IAA to CK ratios in the hybrid than in P. elliottii. Methyl jasmonate (JA-me) and gibberellin A3 (GA3) contents showed a similar pattern and exhibited an M-shaped fluctuation in the hybrid. Furthermore, JA-me, GA3, gibberellin A4 (GA4) and brassinolide (BR) showed significantly higher levels in the hybrid than in P. elliottii. K-means clustering and correlation analyses were used to explore relationships between elements and hormones during embryo development, revealing complex interplay in both species. These data indicate different requirement in element and hormone contents for embryogenesis and suggest species-specific media composition for each step in somatic embryogenesis. The findings provide insights into their developmental processes and informing future research and applications in somatic embryogenesis and forestry breeding.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Lei Xue
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Zhe Wang
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Xiaoliang Che
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Leping Deng
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wei Xie
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wenbing Guo
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China.
| |
Collapse
|
20
|
Yan Q, Lu L, Yi X, Pereira JF, Zhang J. Comparative transcriptome analyses reveal regulatory network and hub genes of aluminum response in roots of elephant grass (Cenchrus purpureus). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135011. [PMID: 38944995 DOI: 10.1016/j.jhazmat.2024.135011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Aluminum (Al) toxicity severely restricts the growth and productivity of elephant grass in acidic soils around the world. However, the molecular mechanisms of Al response have not been investigated in elephant grass. In this study, we conducted phenotype, physiology, and transcriptome analysis of elephant grass roots in response to Al stress. Phenotypic analysis revealed that a low concentration of Al stress improved root growth while higher Al concentrations inhibit root growth. Al stress significantly increased the citrate (CA) content in roots, while the expression levels of genes related to citrate synthesis were substantially changed. The multidrug and toxic compound extrusion (MATE) family were identified as hub genes in the co-expression network of Al response in elephant grass roots. Phylogenetic analysis showed that hub genes CpMATE93 and CpMATE158 belonged to the same clade as other MATE genes reported to be involved in citrate transport. Additionally, overexpression of CpMATE93 conferred Al resistance in yeast cells. These results provide a theoretical basis for further studies of molecular mechanisms in the elephant grass response to Al stress and could help breeders develop elite cultivars with Al tolerance.
Collapse
Affiliation(s)
- Qi Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Liyan Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xianfeng Yi
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Guangxi Vocational University of Agriculture, Nanning 530001, China
| | | | - Jiyu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
21
|
Johnson MG, Olszyk D, Bollman M, Storm MJ, Coulombe RA, Nash M, Manning V, Trippe K, Watts D, Novak J. Amendments promote Douglas-fir survival on Formosa Mine tailings. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:553-564. [PMID: 39072835 PMCID: PMC11665576 DOI: 10.1002/jeq2.20587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/28/2024] [Indexed: 07/30/2024]
Abstract
While mining provides valuable metals and minerals to meet societal demands, it can cause environmental contamination from the residuals (i.e., tailings) of mining. Tailings are often acidic, laden with heavy metals, and lacking adequate nutrients and physical conditions for plant growth, precluding the establishment of plant cover to reduce the offsite movement of mining wastes. This paper describes a case study at the Formosa Mine in Douglas County, Oregon, where tailings were amended with a mixture of lime, biosolids, biochar, and microbial inoculum to facilitate establishment of Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) seedlings. Results show that the tailings pH increased, and Douglas-fir seedlings survived and grew with these amendments. After 2 years, pH did, however, decrease in some downslope locations and was associated with an increase in tree mortality. This suggests that tailings conditions should be monitored, and amendments should be reapplied as needed, particularly in areas receiving acidic runoff from unamended upslope tailings, until the seedlings are fully established. This study not only provides a prescription for the addition of biochar and other amendments to enhance plant growth for revegetation purposes in low-pH, metal-contaminated mine tailings, but it also demonstrates a method that can be used to address similar problems at other mine sites.
Collapse
Affiliation(s)
- Mark G. Johnson
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - David Olszyk
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - Michael Bollman
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - Marjorie J. Storm
- Consolidated Safety Services, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - Rob A. Coulombe
- Consolidated Safety Services, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - Maliha Nash
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, Oregon, 97333, USA
| | - Viola Manning
- U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, Oregon, 97330, USA
| | - Kristin Trippe
- U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, Oregon, 97330, USA
| | - Donald Watts
- U.S. Department of Agriculture Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, 2611 West Lucas St., Florence, South Carolina, 29501, USA
| | - Jeffrey Novak
- U.S. Department of Agriculture Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, 2611 West Lucas St., Florence, South Carolina, 29501, USA
| |
Collapse
|
22
|
Rodríguez-Sánchez V, Tapia-Maruri D, Márquez-Guzmán J, Vázquez-Santana S, Cruz-Ortega R. Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings. PHYSIOLOGIA PLANTARUM 2024; 176:e14554. [PMID: 39363679 DOI: 10.1111/ppl.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg-1 Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg-1 DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.
Collapse
Affiliation(s)
- Verónica Rodríguez-Sánchez
- Laboratorio de Alelopatía, Instituto de Ecología, Departamento de Ecología Funcional, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Daniel Tapia-Maruri
- Laboratorio de Microscopia Avanzada, Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional, Yautepec, Morelos, México
| | - Judith Márquez-Guzmán
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sonia Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Instituto de Ecología, Departamento de Ecología Funcional, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
23
|
Lao Y, Ma J, Pan K, Chen F, Zhang Z. A Brief Review of Effects of Aluminum on Marine Diatoms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:31. [PMID: 39179726 DOI: 10.1007/s00128-024-03939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Aluminum (Al) is the most abundant metal element in the Earth's crust, yet it is present in trace levels in seawater. Growing evidence suggests potential effects of Al on the biogeochemical cycles of carbon (C) and silicon (Si) in the marine environment. By accumulation, sinking, and deposition, diatoms play a center role in coupling these three elements' biocycles in the oceans. However, it is still a challenge to elucidate the behaviors of diatoms influenced by Al. Our review aims to present the current knowledge of Al biogeochemistry in marine environment and its impact on marine phytoplankton, with a focus on how Al influences diatoms. Previous researches indicate that Al can promote the growth of diatoms, and diatoms have the ability to incorporate Al into their frustules. Given this, we paid particular attention on the interaction between Al and diatom frustules, and the influences of Al on the physiology and ecology of diatoms. Furthermore, it is suggested that Al alters the accumulation of other nutrients such as nitrogen, phosphorus and iron in diatoms; the subsequent responses of diatoms are also discussed. The objective of this review is to address the potential roles of Al in diatoms and offer insights into the possible biogeochemistry implications.
Collapse
Affiliation(s)
- Yingqi Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Fengyuan Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, SAR, Hong Kong, China
| | - Zhen Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, SAR, Hong Kong, China
| |
Collapse
|
24
|
Draghi S, Fehri NE, Ateş F, Özsobacı NP, Tarhan D, Bilgiç B, Dokuzeylül B, Yaramış ÇP, Ercan AM, Or ME, Cagnardi P, Brecchia G, Curone G, Di Cesare F. Use of Hair as Matrix for Trace Elements Biomonitoring in Cattle and Roe Deer Sharing Pastures in Northern Italy. Animals (Basel) 2024; 14:2209. [PMID: 39123735 PMCID: PMC11311060 DOI: 10.3390/ani14152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Intensive cattle breeding's environmental challenges are prompting shifts to extensive, pasture-based systems, influencing nutrient and pollutant uptake. PTEs are essential and non-essential elements, regularly found in the environment and organisms, and in which unbalances lead to health issues. Hair analysis, a non-invasive method, provides retrospective PTE exposure evaluation. This study aims to understand exposure and species-specific accumulation patterns of PTEs in cattle and roe deer sharing pastures in Northern Italy using the hair analysis. Aluminum, As, Cd, Cr, Ni, Pb, Cu, Mg, Fe, and Zn were quantified through the use of ICP-OES. Findings show As levels significantly higher in roe deer due to their selective feeding, while Cd and Pb levels align with other studies. Essential elements like Cu, Fe, and Zn are lower in cattle, possibly due to diet differences. Higher Cr and Ni levels in cattle suggest contamination or physiological differences in accumulation patterns. In conclusion, hair analysis is valuable for monitoring environmental PTE exposure, highlighting significant interspecies differences and the potential of both animals as bioindicators in shared grazing areas.
Collapse
Affiliation(s)
- Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| | - Nour Elhouda Fehri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| | - Fatma Ateş
- Department of Biophysics, Faculty of Medicine, Istanbul Beykent University, Istanbul 34398, Turkey;
| | - Nural Pastacı Özsobacı
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul 34098, Turkey; (N.P.Ö.); (A.M.E.)
| | - Duygu Tarhan
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey;
| | - Bengü Bilgiç
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (B.B.); (B.D.); (M.E.O.)
| | - Banu Dokuzeylül
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (B.B.); (B.D.); (M.E.O.)
| | - Çağla Parkan Yaramış
- Department of Plant and Animal Production, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - Alev Meltem Ercan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul 34098, Turkey; (N.P.Ö.); (A.M.E.)
| | - Mehmet Erman Or
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (B.B.); (B.D.); (M.E.O.)
| | - Petra Cagnardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| | - Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.E.F.); (P.C.); (G.B.); (F.D.C.)
| |
Collapse
|
25
|
Hara F, Mizuyama N, Fujino T, Takada S, Temma T, Saji H, Mukai T, Hagimori M. Development of a Pyrone-Fused Tricyclic Scaffold-based Ratiometric Fluorescent Probe for Al 3+ Detection. J Fluoresc 2024:10.1007/s10895-024-03864-w. [PMID: 39042359 DOI: 10.1007/s10895-024-03864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Aluminum (Al3+) is environmentally abundant and can harm living organisms in various ways, such as by inhibiting root growth, damaging faunal nervous systems, and promoting tumor cell proliferation. However, the dynamics of Al3+ in living organisms are largely unknown; thus, detecting Al3+ in the environment and organisms is crucial. Fluorescent probes are useful tools for the selective detection of metal ions. In particular, ratiometric fluorescent probes exhibit a detection response at two different maximum fluorescence emission wavelengths; which is advantageous for avoiding the influence of background fluorescence. A novel pyrone-fused tricyclic scaffold-based ratiometric fluorescent probe for detecting Al3+, ethyl 11-imino-1-oxo-3-phenyl-1H,11H-pyrano[4,3-b] quinolizine-5-carboxylate (PQ), was developed in this study. The PQ fluorescence blue shifted from 505 to 457 nm upon the addition of Al3+. The blue shift was accompanied by a change in the fluorescence color of the PQ solution from green to blue. Fluorescence titration experiments demonstrated that the fluorescence intensity ratio at the two peaks of interest (457/505 nm) increased in a concentration-dependent manner upon the addition of Al3+. Moreover, this study demonstrated that a PQ-soaked paper displays a visible color change under ultraviolet light upon exposure to Al3+. The above results suggest that PQ is an effective ratiometric probe for the detection of Al3+ in the environment. Future studies will be conducted to introduce various substituents and develop fluorescent probes by leveraging the fluorescence property of a pyrone-fused tricyclic scaffolds.
Collapse
Affiliation(s)
- Fumiko Hara
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650-0047, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
- Strategic Research Area for Sustainable Development in East Asia, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
| | - Shinya Takada
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, 569-1094, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-Ku, Kobe, 658-8558, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
| |
Collapse
|
26
|
Kulasza M, Sielska A, Szenejko M, Soroka M, Skuza L. Effects of copper, and aluminium in ionic, and nanoparticulate form on growth rate and gene expression of Setaria italica seedlings. Sci Rep 2024; 14:15897. [PMID: 38987627 PMCID: PMC11237061 DOI: 10.1038/s41598-024-66921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
This study aims to determine the effects of copper, copper oxide nanoparticles, aluminium, and aluminium oxide nanoparticles on the growth rate and expression of ACT-1, CDPK, LIP, NFC, P5CR, P5CS, GR, and SiZIP1 genes in five days old seedling of Setaria italica ssp. maxima, cultivated in hydroponic culture. Depending on their concentration (ranging from 0.1 to 1.8 mg L-1), all tested substances had both stimulating and inhibiting effects on the growth rate of the seedlings. Copper and copper oxide-NPs had generally a stimulating effect whereas aluminium and aluminium oxide-NPs at first had a positive effect but in higher concentrations they inhibited the growth. Treating the seedlings with 0.4 mg L-1 of each tested toxicant was mostly stimulating to the expression of the genes and reduced the differences between the transcript levels of the coleoptiles and roots. Increasing concentrations of the tested substances had both stimulating and inhibiting effects on the expression levels of the genes. The highest expression levels were usually noted at concentrations between 0.4 and 1.0 mg/L of each metal and metal nanoparticle, except for SiZIP1, which had the highest transcript amount at 1.6 mg L-1 of Cu2+ and at 0.1-0.8 mg L-1 of CuO-NPs, and LIP and GR from the seedling treated with Al2O3-NPs at concentrations of 0.1 and 1.6 mg L-1, respectively.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
| | - Anna Sielska
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Doctoral School, University of Szczecin, 70383, Szczecin, Poland.
| | - Magdalena Szenejko
- Institute of Marine and Environmental Sciences, University of Szczecin, 71412, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| | - Marianna Soroka
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, 71412, Szczecin, Poland
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| |
Collapse
|
27
|
Szőke L, Tóth B, Javornik T, Lazarević B. Quantifying aluminum toxicity effects on corn phenotype using advanced imaging technologies. PLANT DIRECT 2024; 8:e623. [PMID: 39040680 PMCID: PMC11262852 DOI: 10.1002/pld3.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Soil acidity (pH <5.5) limits agricultural production due to aluminum (Al) toxicity. The primary target of Al toxicity is the plant root. However, symptoms can be observed on the shoots. This study aims to determine the potential use of chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning technology to quantify the effects of Al toxicity on corn. Corn seedlings were grown for 13 days in nutrient solutions (pH 4.0) with four Al treatments: 50, 100, 200, and 400 μM and a control (0 μM AlCl3 L-1). During the experiment, four measurements were performed: four (MT1), six (MT2), 11 (MT3), and 13 (MT4) days after the application of Al treatments. The most sensitive traits affected by Al toxicity were the reduction of plant growth and increased reflectance in the visible wavelength (affected at MT1). The reflectance of red wavelengths increased more significantly compared to near-infrared and green wavelengths, leading to a decrease in the normalized difference vegetation index and the Green Leaf Index. The most sensitive chlorophyll fluorescence traits, effective quantum yield of PSII, and photochemical quenching coefficient were affected after prolonged Al exposure (MT3). This study demonstrates the usability of selected phenotypic traits in remote sensing studies to map Al-toxic soils and in high-throughput phenotyping studies to screen Al-tolerant genotypes.
Collapse
Affiliation(s)
- Lóránt Szőke
- Department of Plant NutritionUniversity of Zagreb Faculty of AgricultureZagrebCroatia
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Tomislav Javornik
- Centre of Excellence for Biodiversity and Molecular Plant BreedingUniversity of ZagrebZagrebCroatia
- Department of Plant BiodiversityUniversity of Zagreb Faculty of AgricultureZagrebCroatia
| | - Boris Lazarević
- Department of Plant NutritionUniversity of Zagreb Faculty of AgricultureZagrebCroatia
- Centre of Excellence for Biodiversity and Molecular Plant BreedingUniversity of ZagrebZagrebCroatia
| |
Collapse
|
28
|
Su C, Wang J, Feng J, Jiang S, Man F, Jiang L, Zhao M. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice. BMC PLANT BIOLOGY 2024; 24:618. [PMID: 38937693 PMCID: PMC11212236 DOI: 10.1186/s12870-024-05298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.
Collapse
Affiliation(s)
- Chang Su
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingbo Wang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Feng
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sixu Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fuyuan Man
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Linlin Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Minghui Zhao
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
29
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Wei Y, Han R, Yu Y. GmMYB183, a R2R3-MYB Transcription Factor in Tamba Black Soybean ( Glycine max. cv. Tamba), Conferred Aluminum Tolerance in Arabidopsis and Soybean. Biomolecules 2024; 14:724. [PMID: 38927127 PMCID: PMC11202213 DOI: 10.3390/biom14060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Rongrong Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
31
|
Zhou M, Huang C, Lin J, Yuan Y, Lin L, Zhou J, Li Z. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling. PLANTA 2024; 260:33. [PMID: 38896325 DOI: 10.1007/s00425-024-04461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
MAIN CONCLUSION γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.
Collapse
Affiliation(s)
- Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Cheng Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Junnan Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yan Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Long Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Jianzhen Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
32
|
Bhukya N, Hazarika S, Rangappa K, Thakuria D, Narzari R, Debnath S. Comparative stress physiological analysis of aluminium stress tolerance of indigenous maize ( Zea mays L.) cultivars of eastern Himalaya. Heliyon 2024; 10:e31570. [PMID: 38828317 PMCID: PMC11140720 DOI: 10.1016/j.heliyon.2024.e31570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Yield potential of maize having distinct genetic diversity in Eastern Himalayan Region (EHR) hill ecologies is often limited by Al toxicity caused due to soil acidity. Stress physiological analysis of local check exposed to 0-300 μM Al under sand culture revealed that 150 μM Al as critical and 200 μM Al as tolerable limit. Increase in Al from 0 to 300 μM reduced total chlorophyll, carotenoids by 74.8 % and 44.7 % respectively and enhanced anthocyanin by 35.3 % whereas LA, SLW and SL have reduced by 81.3%, 21.3 % and 47.8 % respectively. R/S ratio was 51.0 and 13.7 % higher at lower Al levels (50 μM and 100 μM) and photosynthetic, transpiration rate and TDM were 62.5 %, 42.9 % and 78.6 % lower at higher Al (300 μM) as compared to control. TRL, RSA, RDW and RV at higher Al (300 μM) were 92.6 %, 98.7 %, 78.7 and 97.5 % lower over control respectively. Root and shoot Al and PUpE at higher Al (300 μM) was 194.0, 69.2 and 830 % higher whereas PUE decreased to 88.5 % over control. Evaluation of 31 indigenous maize cultivars at 0, 150, and 250 μM Al in sand culture, alongside tolerance scoring and assessment, revealed that Megha-9, Megha-10, and MZM-19 exhibits high Al tolerance, Megha-1, MZM-22, and MZM-42 demonstrated moderate tolerance, whereas Uruapara, Sublgarh, and BRL Para were identified as Al-sensitive. Stress physiological parameters like SDW, TDM, TRL, SL and LA contributed 46.02 % of variability to PC1, whereas A, RV, RSA, anthocyanin and Chlorophyll_b, contributed 13.56 % of variability to PC2. Highest values of CMS, SL, LP, LA, TRL and anthocyanin were recorded in cluster I having sensitive cultivars while highest CMS, SL, LA, LP, TRL and RSA were found in cluster II having moderately tolerant cultivars and highest mean values for TRL, RSA, LP, LA, CMS and SL were recorded in cluster III having highly Al stress tolerant cultivars. The traits viz., A, RV, RSA, anthocyanin and Chlorophyll_b, total chlorophyll and TDM were emanated as physio-morphological for assessing Al toxicity stress tolerance in Maize with high divergence values. Tolerant cultivars showing 63.4 % and 22.4 % higher anthocyanin at 150 μM Al and 250 μM Al than moderately tolerant one in acid soil experiment with increased root Al, shoot Al, root P and shoot P by 42.6 %, 11 %, 95.1 % and 34 % respectively were emerged as promising for novel maize improvement under acid soils of EHR.
Collapse
Affiliation(s)
- Naresh Bhukya
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Umiam, Meghalaya-793103, India
| | - Samarendra Hazarika
- Division of System Research and Engineering, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya-793103, India
| | - Krishnappa Rangappa
- Division of Crop Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya-793103, India
| | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Umiam, Meghalaya-793103, India
| | - Rumi Narzari
- Division of System Research and Engineering, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya-793103, India
- Division of Crop Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya-793103, India
| | - Supriya Debnath
- Division of Crop Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya-793103, India
| |
Collapse
|
33
|
Li J, Liu L, Wang L, Rao IM, Wang Z, Chen Z. AcEXPA1, an α-expansin gene, participates in the aluminum tolerance of carpetgrass (Axonopus compressus) through root growth regulation. PLANT CELL REPORTS 2024; 43:159. [PMID: 38822842 DOI: 10.1007/s00299-024-03243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.
Collapse
Affiliation(s)
- Jifu Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
- National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, People's Republic of China
| | - Liting Liu
- College of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China
| | - Linjie Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Idupulapati M Rao
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), 763537, Cali, Colombia
| | - Zhiyong Wang
- College of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China.
| | - Zhijian Chen
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China.
- National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, People's Republic of China.
| |
Collapse
|
34
|
Putra R, Tölle M, Krämer U, Müller C. Effects of metal amendment and metalloid supplementation on foliar defences are plant accession-specific in the hyperaccumulator Arabidopsis halleri. Biometals 2024; 37:649-669. [PMID: 37874491 PMCID: PMC11101560 DOI: 10.1007/s10534-023-00550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Soil pollution by metals and metalloids as a consequence of anthropogenic industrialisation exerts a seriously damaging impact on ecosystems. However, certain plant species, termed hyperaccumulators, are able to accumulate extraordinarily high concentrations of these metal(loid)s in their aboveground tissues. Such hyperaccumulation of metal(loid)s is known to act as a defence against various antagonists, such as herbivores and pathogens. We investigated the influences of metal(loid)s on potential defence traits, such as foliar elemental, organic and mechanical defences, in the hyperaccumulator plant species Arabidopsis halleri (Brassicaceae) by artificially amending the soil with common metallic pollutants, namely cadmium (Cd) and zinc (Zn). Additionally, unamended and metal-amended soils were supplemented with the metalloid silicon (Si) to study whether Si could alleviate metal excess. Individuals originating from one non-/low- and two moderately to highly metal-contaminated sites with different metal concentrations (hereafter called accessions) were grown for eight weeks in a full-factorial design under standardised conditions. There were significant interactive effects of metal amendment and Si supplementation on foliar concentrations of certain elements (Zn, Si, aluminium (Al), iron (Fe), potassium (K) and sulfur (S), but these were accession-specific. Profiles of glucosinolates, characteristic organic defences of Brassicaceae, were distinct among accessions, and the composition was affected by soil metal amendment. Moreover, plants grown on metal-amended soil contained lower concentrations of total glucosinolates in one of the accessions, which suggests a potential trade-off between inorganic defence acquisition and biosynthesis of organic defence. The density of foliar trichomes, as a proxy for the first layer of mechanical defence, was also influenced by metal amendment and/or Si supplementation in an accession-dependent manner. Our study highlights the importance of examining the effects of co-occurring metal(loid)s in soil on various foliar defence traits in different accessions of a hyperaccumulating species.
Collapse
Affiliation(s)
- Rocky Putra
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Max Tölle
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
35
|
Wang J, Guo J, Yang H, Deng X, Zhang C. Low levels of Al stimulate the aboveground growth of Davidia involucrata saplings. BMC PLANT BIOLOGY 2024; 24:465. [PMID: 38807074 PMCID: PMC11131280 DOI: 10.1186/s12870-024-05173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Davidia involucrata is a woody perennial and the only living species in the Genus Davidia. It is native to southern China where it holds cultural and scientific importance. However, D. involucrata is now an endangered species and its natural range includes low pH soils which are increasingly impacted by acid rain, nitrogen deposition and imbalanced nutrient cycling. The combination of these stresses also poses the additional risk of aluminum (Al) toxicity. Since the responses of D. involucrata to low pH and aluminum toxicity have not been investigated previously, a hydroponic experiment was conducted to examine the growth of one year old D. involucrata saplings after 50 d growth in a range of pH and Al conditions. Plant biomass, morphology, antioxidant enzyme activity, mineral concentrations and plant ecological strategy were compared at pH 5.8 and pH 4.0 without added Al (AlCl3) and in 0.1, 0.2 and 0.5 mM Al at pH 4.0. Our results showed that compared with pH 5.8, pH 4.0 (without added Al) not only inhibited root and shoot growth but also limited accumulation of nitrogen (N) and phosphorus (P) in leaves of D. involucrate. However, low Al concentrations (0.1 and 0.2 mM Al) at pH 4.0 partially restored the aboveground growth and leaf N concentrations, suggesting an alleviation of H+ toxicity by low Al concentrations. Compared with low Al concentrations, 0.5 mM Al treatment decreased plant growth and concentrations of N, P, and magnesium (Mg) in the leaves, which demonstrated the toxicity of high Al concentration. The results based on plant ecological strategy showed that D. involucrate decreased the competitiveness and favored its stress tolerance as pH changed from 5.8 to 4.0. Meanwhile, the competitiveness and stress tolerance of D. involucrata increased and decreased at low Al concentrations, respectively, and decreased and increased at high Al concentration, respectively. These trade-offs in ecological strategy were consistent with the responses of growth and antioxidant enzyme activity, reflecting a sensitive adaptation of D. involucrata to acid and Al stresses, which may aid in sustaining population dynamics. These findings are meaningful for understanding the population dynamics of D. involucrata in response to aluminum toxicity in acid soils.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- Institute of Environmental Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Jiong Guo
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Houqi Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinqi Deng
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Chunyan Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China.
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China.
| |
Collapse
|
36
|
Ningombam L, Hazarika BN, Singh YD, Singh RP, Yumkhaibam T. Aluminium stress tolerance by Citrus plants: a consolidated review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:705-718. [PMID: 38846464 PMCID: PMC11150227 DOI: 10.1007/s12298-024-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Aluminium, a metallic element abundant in soils as aluminosilicates minerals, poses a toxic threat to plants, particularly in acidic soil conditions, thereby affecting their growth and development. Given their adaptability to diverse soil and climate conditions, Citrus plants have gained significant attention regarding their tolerance to Aluminium toxicity. In the North-eastern region of India, where soils are often slightly acidic with elevated aluminium levels, Citrus species are predominantly found. Understanding the tolerance mechanisms of these Citrus fruits and screening wild Citrus species for their adaptability to abiotic stresses is crucial for enhancing fruit production. Numerous investigations have demonstrated that Citrus species exhibit remarkable tolerance to aluminium contamination, surpassing the typical threshold of 30% incidence. When cultivated in acidic soils, Citrus plants encounter restricted root growth and reduced nutrient and moisture uptake, leading to various nutrient deficiency symptoms. However, promisingly, certain Citrus species such as Citrus jambhiri (Rough lemon), Poncirus trifoliata, Citrus sinensis, and Citrus grandis have shown considerable aluminium tolerance. This comprehensive review delves into the subject of aluminium toxicity and its implications, while also shedding light on the mechanisms through which Citrus plants develop tolerance to this element.
Collapse
Affiliation(s)
- Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - B. N. Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Yengkhom Disco Singh
- Department of Post Harvest Technology, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Ram Preet Singh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| |
Collapse
|
37
|
Singh D, Maithreyi S, Taunk J, Singh MP. Physiological and proteomic characterization revealed the response mechanisms underlying aluminium tolerance in lentil (Lens culinaris Medikus). PHYSIOLOGIA PLANTARUM 2024; 176:e14298. [PMID: 38685770 DOI: 10.1111/ppl.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shubhra Maithreyi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
38
|
Hara F, Mizuyama N, Fujino T, Shrestha AK, Meetiyagoda TAOK, Takada S, Saji H, Mukai T, Hagimori M. Development of a water-soluble fluorescent Al 3+ probe based on phenylsulfonyl-2-pyrone in biological systems. Anal Chim Acta 2024; 1299:342436. [PMID: 38499421 DOI: 10.1016/j.aca.2024.342436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Al exists naturally in the environment and is an important component in acidic soils, which harm almost all plants. Furthermore, Al is widely used in food additives, cosmetics, and medicines, resulting in living organisms ingesting traces of Al orally or dermally every day. Accordingly, Al accumulates in the body, which can cause negative bioeffects and diseases, and this concern is gaining increasing attention. Therefore, to detect and track Al in the environment and in living organisms, the development of novel Al-selective probes that are water-soluble and exhibit fluorescence at long wavelengths is necessary. RESULTS In this study, an Al3+-selective fluorescent probe PSP based on a novel pyrone molecule was synthesized and characterized to detect and track Al in biological systems. PSP exhibited fluorescence enhancement at 580 nm in the presence of Al3+ in aqueous media. Binding analysis using Job's plot and structural analysis using 1H NMR showed that PSP formed a 1:1 complex with Al3+ at the two carbonyl groups of the dimethyl malonate of the pyrone ring. Upon testing in biological systems, PSP showed good cell membrane permeability, detected intracellular Al3+ in human breast cancer cells (MDA-MB-231), and successfully imaged accumulated Al3+ in Microcystis aeruginosa and the larvae of Rheocricotopus species. SIGNIFICANCE The novel Al3+-selective fluorescent probe PSP is highly effective and is expected to aid in elucidating the role of Al3+ in the environment and living organisms.
Collapse
Affiliation(s)
- Fumiko Hara
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan; Strategic Research Area for Sustainable Development in East Asia, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ashok Kumar Shrestha
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | | | - Shinya Takada
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
| |
Collapse
|
39
|
Zuev EV, Lebedeva TV, Yakovleva OV, Kolesova MA, Brykova AN, Lysenko NS, Tyryshkin LG. Genetic Diversity for Effective Resistance in Wheat Landraces from Ethiopia and Eritrea to Fungal Diseases and Toxic Aluminum Ions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1166. [PMID: 38674575 PMCID: PMC11053688 DOI: 10.3390/plants13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
To reveal genetic diversity for effective resistance to five foliar diseases and toxic aluminum ions, the entire collection of wheat species from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) originating from Ethiopia and Eritrea were studied regarding their traits. The collection contains 509 samples of four wheat species (Triticum aestivum-122 samples; T. aethiopicum-340 samples; T. polonicum-6 samples; and T. dicoccum-41 samples). The majority of accessions are new entries of landraces added to the Vavilov collection as a result of the Russian-Ethiopian expedition in 2012. Wheat seedlings were inoculated with causal agents of leaf rust (Pt), powdery mildew (Bgt), Septoria nodorum blotch (SNB), and dark-brown leaf spot blotch (HLB). The types of reaction and disease development were assessed to describe the levels of resistance. All samples of T. aethiopicum were also screened for seedling and adult resistance to Pt, Bgt, and yellow rust (Pst) under field conditions after double inoculation with the corresponding pathogens. To study tolerance to abiotic stress, seedlings were grown in a solution of Al3+ (185 µM, pH 4,0) and in water. The index of root length was used to characterize tolerance. Seedlings belonging to only two accessions out of those studied-k-68236 of T. aethiopicum and k-67397 of T. dicoccum-were resistant to Pt at 20 °C but susceptible at 25 °C. Specific molecular markers closely linked to the five genes for Pt resistance effective against populations of the pathogen from the northwestern region of Russia were not amplified in these two entries after PCR with corresponding primers. Four entries of T. dicoccum-k-18971, k-18975, k-19577, and k-67398-were highly resistant to Bgt. All samples under study were susceptible to HLB and SNB. Under field conditions, 15% of the T. aethiopicum samples were resistant to Pst, both at the seedling and the flag leaf stages, but all were susceptible to the other diseases under study. Among the evaluated samples, 20 entries of T. aestivum, 1 of T. polonicum (k-43765), and 2 of T. dicoccum (k-18971, k-67397) were tolerant to aluminum ions. The identified entries could be valuable sources for the breeding of T. aestivum and other wheats for resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lev G. Tyryshkin
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str. 42-44, 190000 Saint Petersburg, Russia; (E.V.Z.); (T.V.L.); (O.V.Y.); (M.A.K.); (A.N.B.); (N.S.L.)
| |
Collapse
|
40
|
Parra-Almuna L, Pontigo S, Ruiz A, González F, Ferrol N, Mora MDLL, Cartes P. Dissecting the Roles of Phosphorus Use Efficiency, Organic Acid Anions, and Aluminum-Responsive Genes under Aluminum Toxicity and Phosphorus Deficiency in Ryegrass Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:929. [PMID: 38611459 PMCID: PMC11013041 DOI: 10.3390/plants13070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.
Collapse
Affiliation(s)
- Leyla Parra-Almuna
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
| | - Sofía Pontigo
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain;
| | - María de la Luz Mora
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Paula Cartes
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| |
Collapse
|
41
|
Wang S, Cheng H, Wei Y. Supplemental Silicon and Boron Alleviates Aluminum-Induced Oxidative Damage in Soybean Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:821. [PMID: 38592832 PMCID: PMC10975118 DOI: 10.3390/plants13060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Aluminum (Al) toxicity in acidic soils is a major abiotic stress that negatively impacts plant growth and development. The toxic effects of Al manifest primarily in the root system, leading to inhibited root elongation and functionality, which impairs the above-ground organs of the plant. Recent research has greatly improved our understanding of the applications of small molecule compounds in alleviating Al toxicity. This study aimed to investigate the role of boron (B), silicon (Si), and their combination in alleviating Al toxicity in soybeans. The results revealed that the combined application significantly improved the biomass and length of soybean roots exposed to Al toxicity compared to B and Si treatments alone. Our results also indicated that Al toxicity causes programmed cell death (PCD) in soybean roots, while B, Si, and their combination all alleviated the PCD induced by Al toxicity. The oxidative damage induced by Al toxicity was noticeably alleviated, as evidenced by lower MAD and H2O2 accumulation in the soybean roots treated with the B and Si combination. Moreover, B, Si, and combined B and Si significantly enhanced plant antioxidant systems by up-regulating antioxidant enzymes including CAT, POD, APX, and SOD. Overall, supplementation with B, Si, and their combination was found to alleviate oxidative damage and reduce PCD caused by Al toxicity, which may be one of the mechanisms by which they alleviate root growth inhibition due to Al toxicity. Our results suggest that supplementation with B, Si, and their combination may be an effective strategy to improve soybean growth and productivity against Al toxicity.
Collapse
Affiliation(s)
- Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Haijing Cheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
42
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
43
|
Donnelly CP, De Sousa A, Cuypers B, Laukens K, Al-Huqail AA, Asard H, Beemster GTS, AbdElgawad H. Malate production, sugar metabolism, and redox homeostasis in the leaf growth zone of Rye (Secale cereale) increase stress tolerance to aluminum stress: A biochemical and genome-wide transcriptional study. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132956. [PMID: 37976853 DOI: 10.1016/j.jhazmat.2023.132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.
Collapse
Affiliation(s)
- Chase P Donnelly
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Alexandra De Sousa
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Bart Cuypers
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
44
|
Qiu CW, Ma Y, Gao ZF, Sreesaeng J, Zhang S, Liu W, Ahmed IM, Cai S, Wang Y, Zhang G, Wu F. Genome-wide profiling of genetic variations reveals the molecular basis of aluminum stress adaptation in Tibetan wild barley. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132541. [PMID: 37716271 DOI: 10.1016/j.jhazmat.2023.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Aluminum (Al) toxicity in acidic soil is a major factor affecting crop productivity. The extensive genetic diversity found in Tibetan wild barley germplasms offers a valuable reservoir of alleles associated with aluminum tolerance. Here, resequencing of two Al-tolerant barley genotypes (Tibetan wild barley accession XZ16 and cultivated barley Dayton) identified a total of 19,826,182 and 16,287,277 single nucleotide polymorphisms (SNPs), 1628,052 and 1386,973 insertions/deletions (InDels), 61,532 and 57,937 structural variations (SVs), 248,768 and 240,723 copy number variations (CNVs) in XZ16 and Dayton, respectively, and uncovered approximately 600 genes highly related to Al tolerance in barley. Comparative genomic analyses unveiled 71 key genes that contain unique genetic variants in XZ16 and are predominantly associated with organic acid exudation, Al sequestration, auxin response, and transcriptional regulation. Manipulation of these key genes at the genetic and transcriptional level is a promising strategy for developing optimal haplotype combinations and new barley cultivars with improved Al tolerance. This study represents the first comprehensive examination of genetic variation in Al-tolerant Tibetan wild barley through genome-wide profiling. The obtained results make the deep insight into the mechanisms underlying barley adaptation to Al toxicity, and identified the candidate genes useful for improvement of Al tolerance in barley.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jakkrit Sreesaeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Cheng J, Li T, Wei S, Jiang W, Li J, Wang Y, Li Y. Physiological and Proteomic Changes in Camellia semiserrata in Response to Aluminum Stress. Genes (Basel) 2023; 15:55. [PMID: 38254944 PMCID: PMC10815133 DOI: 10.3390/genes15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Camellia semiserrata is an important woody edible oil tree species in southern China that is characterized by large fruits and seed kernels with high oil contents. Increasing soil acidification due to increased use of fossil fuels, misuse of acidic fertilizers, and irrational farming practices has led to leaching of aluminum (Al) in the form of free Al3+, Al(OH)2+, and Al(OH)2+, which inhibits the growth and development of C. semiserrata in South China. To investigate the mechanism underlying C. semiserrata responses to Al stress, we determined the changes in photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substance contents of C. semiserrata leaves under different concentrations of Al stress treatments (0, 1, 2, 3, and 4 mmol/L Alcl3) using a combination of physiological and proteomics approaches. In addition, we identified the differentially expressed proteins (DEPs) under 0 (CK or GNR0), 2 mmol/L (GNR2), and 4 mmol/L (GNR4) Al stress using a 4D-label-free technique. With increasing stress concentration, the photosynthetic indexes of C. semiserrata leaves, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), soluble protein (SP), and soluble sugar (SS) showed an overall trend of increasing and then decreasing, and proline (Pro) and malondialdehyde (MDA) contents tended to continuously increase overall. Compared with the control group, we identified 124 and 192 DEPs in GNR2 and GNR4, respectively, which were mainly involved in metabolic processes such as photosynthesis, flavonoid metabolism, oxidative stress response, energy and carbohydrate metabolism, and signal transduction. At 2 mmol/L Al stress, carbon metabolism, amino sugar and nucleotide sugar metabolism, and flavonoid metabolism-related proteins were significantly changed, and when the stress was increased to 4 mmol/L Al, the cells accumulated reactive oxygen species (ROS) at a rate exceeding the antioxidant system scavenging capacity. To deal with this change, C. semiserrata leaves enhanced their glutathione metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and other metabolic processes to counteract peroxidative damage to the cytoplasmic membrane caused by stress. In addition, we found that C. semiserrata resisted aluminum toxicity mainly by synthesizing anthocyanidins under 2 mmol/L stress, whereas proanthocyanidins were alleviated by the generation of proanthocyanidins under 4 mmol/L stress, which may be a special mechanism by which C. semiserrata responds to different concentrations of aluminum stress.
Collapse
Affiliation(s)
- Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Tong Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Jingxuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yongquan Li
- Scarce and Quality Economic Forest Engineering Technology Research Center, Guangzhou 510225, China
| |
Collapse
|
46
|
Liu C, Cheng H, Wang S, Yu D, Wei Y. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa ( Medicago sativa L.). Int J Mol Sci 2023; 24:17221. [PMID: 38139053 PMCID: PMC10743983 DOI: 10.3390/ijms242417221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Aluminum (Al) toxicity is the most common factor limiting the growth of alfalfa in acidic soil conditions. Melatonin (MT), a significant pleiotropic molecule present in both plants and animals, has shown promise in mitigating Al toxicity in various plant species. This study aims to elucidate the underlying mechanism by which melatonin alleviates Al toxicity in alfalfa through a combined physiological and transcriptomic analysis. The results reveal that the addition of 5 μM melatonin significantly increased alfalfa root length by 48% and fresh weight by 45.4% compared to aluminum treatment alone. Moreover, the 5 μM melatonin application partially restored the enlarged and irregular cell shape induced by aluminum treatment, resulting in a relatively compact arrangement of alfalfa root cells. Moreover, MT application reduces Al accumulation in alfalfa roots and shoots by 28.6% and 27.6%, respectively. Additionally, MT plays a crucial role in scavenging Al-induced excess H2O2 by enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), consequently reducing malondialdehyde (MDA) levels. More interestingly, the RNA-seq results reveal that MT application significantly upregulates the expression of xyloglucan endotransglucosylase/hydrolase (XTH) and carbon metabolism-related genes, including those involved in the glycolysis process, as well as sucrose and starch metabolism, suggesting that MT application may mitigate Al toxicity by facilitating the binding of Al to the cell walls, thereby reducing intracellular Al accumulation, and improving respiration and the content of sucrose and trehalose. Taken together, our study demonstrates that MT alleviates Al toxicity in alfalfa by reducing Al accumulation and restoring redox homeostasis. These RNA-seq results suggest that the alleviation of Al toxicity by MT may occur through its influence on cell wall composition and carbon metabolism. This research advances our understanding of the mechanisms underlying MT's effectiveness in mitigating Al toxicity, providing a clear direction for our future investigations into the underlying mechanisms by which MT alleviates Al toxicity in alfalfa.
Collapse
Affiliation(s)
| | | | | | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (H.C.); (S.W.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (H.C.); (S.W.)
| |
Collapse
|
47
|
Zhang F, Jiang S, Li Q, Song Z, Yang Y, Yu S, Nie Z, Chu M, An Y. Identification of the ALMT gene family in the potato ( Solanum tuberosum L.) and analysis of the function of StALMT6/ 10 in response to aluminum toxicity. FRONTIERS IN PLANT SCIENCE 2023; 14:1274260. [PMID: 38053773 PMCID: PMC10694233 DOI: 10.3389/fpls.2023.1274260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Introduction Aluminum (Al)-activated malate transporters (ALMTs) play an important role in the response to Al toxicity, maintenance of ion homeostasis balance, mineral nutrient distribution, and fruit quality development in plants. However, the function of the StALMT gene family in potato remains unknown. Methods and results In this study, 14 StALMT genes were identified from the potato genome, unevenly distributed on seven different chromosomes. Collinearity and synteny analyses of ALMT genes showed that potatoes had 6 and 22 orthologous gene pairs with Arabidopsis and tomatoes, respectively, and more than one syntenic gene pair was identified for some StALMT gene family members. Real-time quantitative polymerase chain reaction (qPCR) results showed differential expression levels of StALMT gene family members in different tissues of the potato. Interestingly, StALMT1, StALMT6, StALMT8, StALMT10, and StALMT12 had higher expression in the root of the potato cultivar Qingshu No. 9. After being subjected to Al3+ stress for 24 h, the expression of StALMT6 and StALMT10 in roots was evidently increased, displaying their decisive role in Al3+ toxicity. Discussion In addition, overexpression of StALMT6 and StALMT10 in Arabidopsis enhanced its tolerance to Al toxicity. These results indicate that StALMT6 and StALMT10 impart Al3+ resistance in the potato, establishing the foundation for further studies of the biological functions of these genes.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhiying Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Ying Yang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zongyue Nie
- Agriculture Science Institute of Bijie, Bijie, Guizhou, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
48
|
Zhao X, Guo S, Xu C, Li S, Chen Y, Cheng J, Wang Q, Jiang S, Hu A, Li J. Aluminum decreases cadmium accumulation by down-regulating the expression of cadmium-related genes in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108144. [PMID: 39491269 DOI: 10.1016/j.plaphy.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Aluminum (Al) and cadmium (Cd) often coexist in the acidic soils of southern China, but their interactive effects remain unclear. In this study, this was examined in Al-resistant (Atlas 66) and Al-sensitive (Scout 66) wheat cultivars. The results showed that Al significantly alleviated the root growth of Al-tolerant Atlas 66 under Cd stress but had no effect on the root growth of Al-sensitive Scout 66 or the shoot growth of both cultivars. However, Al substantially decreased Cd accumulation in the roots and shoots of Atlas 66 and Scout 66. This could be attributed to the decreased uptake of Cd by the roots rather than the changes in Cd distribution in various organs or the Cd binding and adsorption of the cell wall. Using non-invasive micro-test technology, we further confirmed that Al and Cd co-exposure significantly inhibited the net Cd2+ influx into the roots of Atlas 66 and Scout 66 compared to Cd-only stress. Furthermore, the higher Cd2+ influx into roots should be responsible for the high Cd accumulation in the roots and shoots of Atlas66 than in those of Scout66 under Al and Cd co-exposure, which may be due to the higher Al accumulation in the roots of Al-sensitive Scout 66 that resulted in the larger decrease of negative charges on root surfaces. Finally, the effects of Al on the expression of Cd-related genes responsible for Cd uptake and translocation in wheat roots were investigated. The results have suggested that Al significantly downregulated the expression of TaNramp5 in Atlas 66 and the expression of TaNramp5, TaIRT1 and TaHMA2 in Scout66.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Shiyang Guo
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Chen Xu
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Suyao Li
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Yunjin Chen
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Jianying Cheng
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Qian Wang
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Shumiao Jiang
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Anyong Hu
- School of Geographical Science, Nantong University, Nantong, 226019, China.
| | - Jinbiao Li
- School of Geographical Science, Nantong University, Nantong, 226019, China.
| |
Collapse
|
49
|
Bhattacharjee B, Ali A, Tuteja N, Gill S, Pattanayak A. Identification and expression pattern of aluminium-responsive genes in roots of rice genotype with reference to Al-sensitivity. Sci Rep 2023; 13:12184. [PMID: 37500702 PMCID: PMC10374657 DOI: 10.1038/s41598-023-39238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Aluminium (Al) is the third most abundant element in the Earth's crust. Globally, acidic soil occupies 30-40% of ice-free land areas; Al toxicity is a major threat to crops. The first symptom of Al toxicity is the inhibition of root growth followed by poor root hair development, swollen root apices, necrosis of leaves and reduced yield. Although Rice (Oryza sativa) is an Al toxicity tolerant crop, it shows considerable variations among rice genotypes to Al exposure. Therefore, it is pertinent to understand Al toxicity and underlying mechanisms for Al tolerance in Rice. In the present study, 63 rice genotypes screened under Al stress showed significant variations of root growth. Expression stability of endogenous control genes (ECGs) revealed sulphite reductase (SR) as the most stable ECG that can be used as a reference gene for quantitative real-time PCR (qRT-PCR). Expression patterns of Al-responsive genes suggest genes associated with cytoskeletal dynamics, metabolism, and ion transporter could play significant roles in Al adaptation and tolerance in rice. The results showed Motodhan, Vietnam-1, Yimyu and N-861 as Al-toxicity tolerant, while Lespah, RCPL-13, VL-31329, and UPR2919-141-1 as most Al-sensitive genotypes among the studied rice lines cultivated in North-East India.
Collapse
Affiliation(s)
- Bijoya Bhattacharjee
- Division of Crop Science, ICAR Research Complex for NEH Region, Barapani, Meghalaya, India.
| | - Akib Ali
- Division of Crop Science, ICAR Research Complex for NEH Region, Barapani, Meghalaya, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sarvajeet Gill
- Centre for Biotechnology, Maharishi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
50
|
Ofoe R, Thomas RH, Abbey L. Coordinated Regulation of Central Carbon Metabolism in Pyroligneous Acid-Treated Tomato Plants under Aluminum Stress. Metabolites 2023; 13:770. [PMID: 37367927 DOI: 10.3390/metabo13060770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raymond H Thomas
- Department of Biology, Faculty of Science, Western University 2025E Biological & Geological Sciences Building, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|