1
|
Wang Z, Hao W, Geng D, Wang H, Deng P, Li T, Wang C, Zhao J, Chen C, Ji W, Liu X. A Dual RNA-Seq Analysis Revealed Dynamic Arms Race during the Infestation of Wheat by the English Grain Aphid ( Sitobion avenae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9440-9457. [PMID: 40170517 DOI: 10.1021/acs.jafc.4c13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Sitobion avenae is an important pest that threatens the safety of wheat production in China. However, the resistance mechanisms of wheat to S. avenae are not well understood at present. In this study, we investigated the mechanisms of interaction between wheat and S. avenae at four infestation time points (6, 24, 48, and 72 hpi) using a high-resolution time series dual transcriptomic analysis. The results showed that plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways were significantly activated in the wheat spike of Lunxuan144 during S. avenae infestation. Meanwhile, the functional analysis of the S. avenae transcriptome revealed that some secretory proteins participated in wheat-S. avenae interaction. This study sheds light on the arms race process between S. avenae and wheat, laying the foundation for the green prevention of S. avenae and providing a theoretical basis for mining the key functional genes in both wheat and S. avenae.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Weixi Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Dongfu Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Xianyang, Shaanxi 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Xianyang, Shaanxi 712100, China
| |
Collapse
|
2
|
Zhao J, Yin J, Wang Z, Shen J, Dong M, Yan S. Complicated gene network for regulating feeding behavior: novel efficient target for pest management. PEST MANAGEMENT SCIENCE 2025; 81:10-21. [PMID: 39390706 DOI: 10.1002/ps.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Feeding behavior is a fundamental activity for insects, which is essential for their growth, development and reproduction. The regulation of their feeding behavior is a complicated process influenced by a variety of factors, including external stimuli and internal physiological signals. The current review introduces the signaling pathways in brain, gut and fat body involved in insect feeding behavior, and provides a series of target genes for developing RNA pesticides. Additionally, this review summaries the current challenges for the identification and application of functional genes involved in feeding behavior, and finally proposes the future research direction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiaming Yin
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Dong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
4
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
Affiliation(s)
| | - Scott Ballantyne
- Department of Biology, University of Wisconsin River Falls, River Falls, WI, USA
| | | | | | | | | | | | - Christopher M. Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Thea M. Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Katy Klymus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Yale J. Passamaneck
- Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA
| | - Mauro F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|