1
|
Shivappa S, Amritha KP, Nayak S, Chandrashekar HK, Thorat SA, Kaniyassery A, Govender N, Thiruvengadam M, Muthusamy A. Integration of physio-biochemical, biological and molecular approaches to improve heavy metal tolerance in plants. 3 Biotech 2025; 15:76. [PMID: 40060292 PMCID: PMC11885775 DOI: 10.1007/s13205-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
Heavy metal toxicity hinders plant growth and development by inducing oxidative stress, decreasing biomass, impairing photosynthesis, and potentially leading to plant death. The inherent defense mechanisms employed by plants, including metal sequestration into vacuoles, phytochelation, cell wall metal adsorption and an enhanced antioxidant system can be improved via various approaches to mitigate heavy metal toxicity. This review primarily outlines plants direct and indirect responses to HM stress and the tolerance mechanisms by which plants combat the toxic effects of metals and metalloids to understand the effective management of HMs and metalloids in the soil system. Furthermore, this review highlights measures to mitigate metal and metalloid toxicity and improve metal tolerance through various physio-biochemical, biological, and molecular approaches. This review also provides a comprehensive account of all the mitigative approaches by comparing physio-biochemical, biological and molecular approaches. Finally, we compared all the mitigative approaches used in monocotyledonous and dicotyledonous to increase their metal tolerance. Although many studies have compared monocot and dicot plants based on metal toxicity and tolerance effects, comparisons of these mitigative approaches have not been explored.
Collapse
Affiliation(s)
- Swathi Shivappa
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - K. P. Amritha
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Siddharth Nayak
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Harsha K. Chandrashekar
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor Malaysia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029 South Korea
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| |
Collapse
|
2
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Baćmaga M, Wyszkowska J, Kucharski J. Response of Soil Microbiota, Enzymes, and Plants to the Fungicide Azoxystrobin. Int J Mol Sci 2024; 25:8104. [PMID: 39125673 PMCID: PMC11311602 DOI: 10.3390/ijms25158104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The present study was aimed at assessing the impact of azoxystrobin-a fungicide commonly used in plant protection against pathogens (Amistar 250 SC)-on the soil microbiota and enzymes, as well as plant growth and development. The laboratory experiment was conducted in three analytical terms (30, 60, and 90 days) on sandy clay (pH-7.0). Azoxystrobin was applied to soil in doses of 0.00 (C), 0.110 (F) and 32.92 (P) mg kg-1 d.m. of soil. Its 0.110 mg kg-1 dose stimulated the proliferation of organotrophic bacteria and actinobacteria but inhibited that of fungi. It also contributed to an increase in the colony development index (CD) and a decrease in the ecophysiological diversity index (EP) of all analyzed groups of microorganisms. Azoxystrobin applied at 32.92 mg kg-1 reduced the number and EP of microorganisms and increased their CD. PP952051.1 Bacillus mycoides strain (P), PP952052.1 Prestia megaterium strain (P) bacteria, as well as PP952052.1 Kreatinophyton terreum isolate (P) fungi were identified in the soil contaminated with azoxystrobin, all of which may exhibit resistance to its effects. The azoxystrobin dose of 0.110 mg kg-1 stimulated the activity of all enzymes, whereas its 32.92 mg kg-1 dose inhibited activities of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease and stimulated the activity of catalase. The analyzed fungicide added to the soil at both 0.110 and 32.92 mg kg-1 doses inhibited seed germination and elongation of shoots of Lepidium sativum L., Sinapsis alba L., and Sorgum saccharatum L.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (M.B.); (J.K.)
| | | |
Collapse
|
4
|
Guo M, Hu J, Jiang C, Zhang Y, Wang H, Zhang X, Hsiang T, Shi C, Wang Q, Wang F. Response of microbial communities in the tobacco phyllosphere under the stress of validamycin. Front Microbiol 2024; 14:1328179. [PMID: 38304858 PMCID: PMC10832016 DOI: 10.3389/fmicb.2023.1328179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Validamycin, is classified as an environmentally friendly fungicide. It has high efficacy with little associated pollution risk, and it has been used in China on tobacco for many years especially during leaf spot season. To understand changes in microbial communities and functional aspects of the tobacco phyllosphere after exposure to validamycin, the chemical was sprayed on tobacco leaves during brown spot epidemic periods caused by Alternaria alternata, and asymptomatic and symptomatic leaves of tobacco were sampled at different times (0 day before, 5, 10, and 15 days after application). The fungal and bacterial population diversity and structure were revealed using Illumina NovaSeq PE250 high-throughput sequencing technology, and Biolog-ECO technology which analyzes the metabolic differences between samples by using different carbon sources as the sole energy source. The results showed that the microbial community structure of both asymptomatic and symptomatic tobacco leaves changed after the application of valproate, with the microbial community structure of the asymptomatic tobacco leaves being more strongly affected than that of the symptomatic leaves, and the diversity of bacteria being greater than that of fungi. Phyllosphere fungal diversity in asymptomatic leaves increased significantly after application, and bacterial abundance and diversity in both asymptomatic and symptomatic leaves first increased and then decreased. Validamycin treatment effectively reduced the relative abundance of Alternaria, Cladosporium, Kosakonia, and Sphingomonas in leaves showing symptoms of tobacco brown spot, while the relative abundance of Thanatephorus, Pseudomonas, and Massilia increased significantly after application. Furthermore, the ability to metabolize a variety of carbon sources was significantly reduced in both types of leaves after validamycin application, and both types had a weaker ability to metabolize α-Ketobutyric Acid after application. This study reveals phyllosphere micro-ecological changes in symptomatic and asymptomatic tobacco leaves during different periods after validamycin application and the effects on the metabolic capacity of phyllosphere microorganisms. It can provide some basis for exploring the effect of validamycin on the control of tobacco brown spot.
Collapse
Affiliation(s)
- Moyan Guo
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Jingrong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chaoying Jiang
- Guizhou Tobacco Company of China National Tobacco Company, Guiyang, Guizhou, China
| | - Yi Zhang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Xinghong Zhang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Caihua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Qing Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Leal CM, Geiger A, Molnár A, Váczy KZ, Kgobe G, Zsófi Z, Geml J. Disentangling the effects of terroir, season, and vintage on the grapevine fungal pathobiome. Front Microbiol 2024; 14:1322559. [PMID: 38298541 PMCID: PMC10829339 DOI: 10.3389/fmicb.2023.1322559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
The composition, diversity and dynamics of microbial communities associated with grapevines may be influenced by various environmental factors, including terroir, vintage, and season. Among these factors, terroir stands out as a unique possible determinant of the pathobiome, the community of plant-associated pathogens. This study employed high-throughput molecular techniques, including metabarcoding and network analysis, to investigate the compositional dynamics of grapevine fungal pathobiome across three microhabitats (soil, woody tissue, and bark) using the Furmint cultivar. Samples were collected during late winter and late summer in 2020 and 2021, across three distinct terroirs in Hungary's Tokaj wine region. Of the 123 plant pathogenic genera found, Diplodia, Phaeomoniella, and Fusarium displayed the highest richness in bark, wood, and soil, respectively. Both richness and abundance exhibited significant disparities across microhabitats, with plant pathogenic fungi known to cause grapevine trunk diseases (GTDs) demonstrating highest richness and abundance in wood and bark samples, and non-GTD pathogens prevailed soil. Abundance and richness, however, followed distinct patterns Terroir accounted for a substantial portion of the variance in fungal community composition, ranging from 14.46 to 24.67%. Season and vintage also contributed to the variation, explaining 1.84 to 2.98% and 3.67 to 6.39% of the variance, respectively. Notably, significant compositional differences in fungi between healthy and diseased grapevines were only identified in wood and bark samples. Cooccurrence networks analysis, using both unweighted and weighted metrics, revealed intricate relationships among pathogenic fungal genera. This involved mostly positive associations, potentially suggesting synergism, and a few negative relationships, potentially suggesting antagonistic interactions. In essence, the observed differences among terroirs may stem from environmental filtering due to varied edaphic and mesoclimatic conditions. Temporal weather and vine management practices could explain seasonal and vintage fungal dynamics. This study provides insights into the compositional dynamics of grapevine fungal pathobiome across different microhabitats, terroirs, seasons, and health statuses. The findings emphasize the importance of considering network-based approaches in studying microbial communities and have implications for developing improved viticultural plant health strategies.
Collapse
Affiliation(s)
- Carla Mota Leal
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Adrienn Geiger
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Anna Molnár
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z. Váczy
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Glodia Kgobe
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
6
|
Si H, Cui B, Liu F, Zhao M. Microbial community and chemical composition of cigar tobacco ( Nicotiana tabacum L.) leaves altered by tobacco wildfire disease. PLANT DIRECT 2023; 7:e551. [PMID: 38099080 PMCID: PMC10719477 DOI: 10.1002/pld3.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Tobacco wildfire disease caused by Pseudomonas syringae pv. tabaci is one of the most destructive foliar bacterial diseases occurring worldwide. However, the effect of wildfire disease on cigar tobacco leaves has not been clarified in detail. In this study, the differences in microbiota and chemical factors between wildfire disease-infected leaves and healthy leaves were characterized using high-throughput Illumina sequencing and a continuous-flow analytical system, respectively. The results demonstrated significant alterations in the structure of the phyllosphere microbial community in response to wildfire disease, and the infection of P. syringae pv. tabaci led to a decrease in bacterial richness and diversity. Furthermore, the content of nicotine, protein, total nitrogen, and Cl- in diseased leaves significantly increased by 47.86%, 17.46%, 20.08%, and 72.77% in comparison to healthy leaves, while the levels of total sugar and reducing sugar decreased by 59.59% and 70.0%, respectively. Notably, the wildfire disease had little effect on the content of starch and K+. Redundancy analysis revealed that Pseudomonas, Staphylococcus, Cladosporium, and Wallemia displayed positive correlations with nicotine, protein, total nitrogen, Cl- and K+ contents, while Pantoea, Erwinia, Sphingomonas, Terrisporobacter, Aspergillus, Alternaria, Sampaiozyma, and Didymella displayed positive correlations with total sugar and reducing sugar contents. Brevibacterium, Brachybacterium, and Janibacter were found to be enriched in diseased leaves, suggesting their potential role in disease suppression. Co-occurrence network analysis indicated that positive correlations were prevalent in microbial networks, and the bacterial network of healthy tobacco leaves exhibited greater complexity compared to diseased tobacco leaves. This study revealed the impact of wildfire disease on the microbial community and chemical compositions of tobacco leaves and provides new insights for the biological control of tobacco wildfire disease.
Collapse
Affiliation(s)
- Hongyang Si
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Cui
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Fang Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingqin Zhao
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
7
|
Zhu XC, Xu SG, Wang YR, Zou MT, Mridha MAU, Javed K, Wang Y. Unveiling the Potential of Bacillus safensis Y246 for Enhanced Suppression of Rhizoctonia solani. J Fungi (Basel) 2023; 9:1085. [PMID: 37998890 PMCID: PMC10672523 DOI: 10.3390/jof9111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Rhizoctonia solani is a significant pathogen affecting various crops, including tobacco. In this study, a bacterial strain, namely Y246, was isolated from the soil of healthy plants and exhibited high antifungal activity. Based on morphological identification and DNA sequencing, this bacterial strain was identified as Bacillus safensis. The aim of this investigation was to explore the antifungal potential of strain Y246, to test the antifungal stability of Y246 by adjusting different cultivation conditions, and to utilize gas chromatography-mass spectrometry (GC-MS) to predict the volatile compounds related to antifungal activity in Y246. In vitro assays demonstrated that strain Y246 exhibited a high fungal inhibition rate of 76.3%. The fermentation broth and suspension of strain Y246 inhibited the mycelial growth of R. solani by 66.59% and 63.75%, respectively. Interestingly, treatment with volatile compounds derived from the fermentation broth of strain Y246 resulted in abnormal mycelial growth of R. solani. Scanning electron microscopy analysis revealed bent and deformed mycelium structures with a rough surface. Furthermore, the stability of antifungal activity of the fermentation broth of strain Y246 was assessed. Changes in temperature, pH value, and UV irradiation time had minimal impact on the antifungal activity, indicating the stability of the antifungal activity of strain Y246. A GC-MS analysis of the volatile organic compounds (VOCs) produced by strain Y246 identified a total of 34 compounds with inhibitory effects against different fungi. Notably, the strain demonstrated broad-spectrum activity, exhibiting varying degrees of inhibition against seven pathogens (Alternaria alternata, Phomopsis. sp., Gloeosporium musarum, Dwiroopa punicae, Colletotrichum karstii, Botryosphaeria auasmontanum, and Botrytis cinerea). In our extensive experiments, strain Y246 not only exhibited strong inhibition against R. solani but also demonstrated remarkable inhibitory effects on A. alternata-induced tobacco brown spot and kiwifruit black spot, with impressive inhibition rates of 62.96% and 46.23%, respectively. Overall, these findings highlight the significant antifungal activity of B. safensis Y246 against R. solani. In addition, Y246 has an excellent antifungal stability, with an inhibition rate > 30% under different treatments (temperature, pH, UV). The results showed that the VOCs of strain Y246 had a strong inhibitory effect on the colony growth of R. solani, and the volatile substances produced by strain Y246 had an inhibitory effect on R. solani at rate of 70.19%. Based on these results, we can conclude that Y246 inhibits the normal growth of R. solani. These findings can provide valuable insights for developing sustainable agricultural strategies.
Collapse
Affiliation(s)
- Xing-Cheng Zhu
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
| | - Shu-Gang Xu
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
| | - Yu-Ru Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
| | - Meng-Ting Zou
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
| | | | - Khadija Javed
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
- Julius Kühn-Institut (JKI) for Biological Control, 64287 Darmstadt, Germany
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China; (X.-C.Z.); (S.-G.X.); (Y.-R.W.); (M.-T.Z.)
| |
Collapse
|
8
|
Feng R, Wang H, Liu T, Wang F, Cai L, Chen X, Zhang S. Response of microbial communities in the phyllosphere ecosystem of tobacco exposed to the broad-spectrum copper hydroxide. Front Microbiol 2023; 14:1229294. [PMID: 37840714 PMCID: PMC10568630 DOI: 10.3389/fmicb.2023.1229294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Copper hydroxide is a broad-spectrum copper fungicide, which is often used to control crop fungal and bacterial diseases. In addition to controlling targeted pathogens, copper hydroxide may also affect other non-targeted microorganisms in the phyllosphere ecosystem. At four time points (before spraying, and 5, 10 and 15 days after fungicide application), the response of diseased and healthy tobacco phyllosphere microorganisms to copper hydroxide stress was studied by using Illumina high-throughput sequencing technology, and Biolog tools. The results showed that the microbiome communities of the healthy group were more affected than the disease group, and the fungal community was more sensitive than the bacterial community. The most common genera in the disease group were Alternaria, Boeremia, Cladosporium, Pantoea, Ralstonia, Pseudomonas, and Sphingomonas; while in the healthy group, these were Alternaria, Cladosporium, Symmetrospora, Ralstonia, and Pantoea. After spraying, the alpha diversity of the fungal community decreased at 5 days for both healthy and diseased groups, and then showed an increasing trend, with a significant increase at 15 days for the healthy group. The alpha diversity of bacterial community in healthy and diseased groups increased at 15 days, and the healthy group had a significant difference. The relative abundance of Alternaria and Cladosporium decreased while that of Boeremia, Stagonosporopsis, Symmetrospora, Epicoccum and Phoma increased in the fungal communities of healthy and diseased leaves. The relative abundance of Pantoea decreased first and then increased, while that of Ralstonia, Pseudomonas and Sphingomonas increased first and then decreased in the bacterial communities of healthy and diseased leaves. While copper hydroxide reduced the relative abundance of pathogenic fungi Alternaria and Cladosporium, it also resulted in the decrease of beneficial bacteria such as Actinomycetes and Pantoea, and the increase of potential pathogens such as Boeremia and Stagonosporopsis. After treatment with copper hydroxide, the metabolic capacity of the diseased group improved, while that of the healthy group was significantly suppressed, with a gradual recovery of metabolic activity as the application time extended. The results revealed changes in microbial community composition and metabolic function of healthy and diseased tobacco under copper hydroxide stress, providing a theoretical basis for future studies on microecological protection of phyllosphere.
Collapse
Affiliation(s)
- Ruichao Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tingting Liu
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xingjiang Chen
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|