1
|
Chang Y, Zhang R, Liu Y, Liu Y, Tao L, Liu D, Ma Y, Sun W. Conservation genomics of a threatened subtropical Rhododendron species highlights the distinct conservation actions required in marginal and admixed populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70175. [PMID: 40287966 PMCID: PMC12034323 DOI: 10.1111/tpj.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
With the impact of climate change and anthropogenic activities, the underlying threats facing populations with different evolutionary histories and distributions, and the associated conservation strategies necessary to ensure their survival, may vary within a species. This is particularly true for marginal populations and/or those showing admixture. Here, we re-sequence genomes of 102 individuals from 21 locations for Rhododendron vialii, a threatened species distributed in the subtropical forests of southwestern China that has suffered from habitat fragmentation due to deforestation. Population structure results revealed that R. vialii can be divided into five genetic lineages using neutral single-nucleotide polymorphisms (SNPs), whereas selected SNPs divide the species into six lineages. This is due to the Guigu (GG) population, which is identified as admixed using neutral SNPs, but is assigned to a distinct genetic cluster using non-neutral loci. R. vialii has experienced multiple genetic bottlenecks, and different demographic histories have been suggested among populations. Ecological niche modeling combined with genomic offset analysis suggests that the marginal population (Northeast, NE) harboring the highest genetic diversity is likely to have the highest risk of maladaptation in the future. The marginal population therefore needs urgent ex situ conservation in areas where the influence of future climate change is predicted to be well buffered. Alternatively, the GG population may have the potential for local adaptation, and will need in situ conservation. The Puer population, which carries the heaviest genetic load, needs genetic rescue. Our findings highlight how population genomics, genomic offset analysis, and ecological niche modeling can be integrated to inform targeted conservation.
Collapse
Affiliation(s)
- Yuhang Chang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
2
|
Fan Y, Yao W, Wang Z, Fan X, Hu S, Wang H, Ou J. Predicting Potential Suitable Habitats of Three Rare Wild Magnoliaceae Species ( Michelia crassipes, Lirianthe coco, Manglietia insignis) Under Current and Future Climatic Scenarios Based on the Maxent Model. PLANTS (BASEL, SWITZERLAND) 2025; 14:506. [PMID: 40006766 PMCID: PMC11859081 DOI: 10.3390/plants14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
In recent years, the impacts of climate change and human activities have intensified the loss and fragmentation of habitats for wild rare Magnoliaceae. Predicting the potential impacts of future climate change on the suitable habitat distribution of wild and endangered Magnoliaceae species is of great significance for their conservation and application. This study employs the optimized MaxEnt model to investigate current and future potential suitable habitats of three rare Magnoliaceae species (Michelia crassipes, Lirianthe coco, and Manglietia insignis). The dominant environmental variables influencing the distribution of three species were also explored. The results showed the following: (1) The potential habitat range of three Magnoliaceae species currently span from 92-122° N and 19-36° E. Variables associated with temperature (bio2, bio9, bio4) and altitude (Ele) significantly influence the distribution of these species, with precipitation (bio17) and ultraviolet radiation (UVB4) playing a minor role. The warm and humid climate in central and southern China is highly conducive to their growth. (2) Under the SSP126 scenario, after the mid-21st century, the suitable habitat area of Michelia crassipes has undergone a fluctuating trend of initial increase followed by decrease, reducing to 51.84 × 104 km2 in 2090. On the other hand, both the suitable habitat areas of Lirianthe coco and Manglietia insignis show an upward trend. Under the SSP245 and SSP585 scenarios, the total suitable habitat areas of these three rare Magnoliaceae species gradually decrease. (3) We compared the priority protection areas with existing Protected Areas (PAs) in gap analysis; 96.84% of priority conservation areas are lacking effective protection. (4) The distribution centroid is constantly moving to western China. In order to address habitat fragmentation, it is recommended that the range of natural reserves be expanded and ecological corridors be established in the future, preferably according to the predicted suitable climate for protected areas and refuges or habitats for these species. Overall, these findings provide valuable insights for the preservation, stewardship, and utilization of the endangered species of Magnoliaceae under the circumstances of projected global climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China; (Y.F.); (W.Y.); (Z.W.); (X.F.); (S.H.); (H.W.)
| |
Collapse
|
3
|
Liu Y, Tan YL, Li YM, Ping YM, He DM, Zhang GL, Sun WB, Cai L. Conservation and threatened status of plant species with extremely small populations in the karst region of southeastern Yunnan, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1520363. [PMID: 39777088 PMCID: PMC11703871 DOI: 10.3389/fpls.2024.1520363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The southeastern Yunnan is one of the most typical areas in China with karst landforms. The rich variety of vegetation types and plant diversity means that threatened status are also synchronized. Over the past 20 years, the comprehensive conservation team for plant species with extremely small populations (PSESP) has conducted in-depth field surveys in the region, combining relevant literature and conservation projects to compile a list of PSESP which including conservation and endangered status, conservation actions, and scientific research. Among all 116 PSESP, relatively abundant families include Cycadaceae (12 species), Magnoliaceae (17species) and Orchidaceae (18 species). Hekou and Malipo are the counties with the highest number, with 44 and 43 species respectively. A total of 81 species are included in the List of National Key Protected Wild Plants in China. For threatened status, 24 critically endangered (CR) species and 41 endangered (EN) species represent levels of severe threat. Up to now, 96 species have taken at least one protective measure from in situ conservation, ex situ conservation, breeding or reintroduction/reinforcement. But there are still 20 species that have not taken any protective measures. Additionally, scientific research has been conducted on 86 species, but 30 species have not had any research initiated. The threat of human interference mainly including overcollection and habitat destruction, and the threats of limitations imposed on PSESP itself and natural disasters cannot be ignored. Our findings underscore the importance of integrated conservation strategies, in addition to the in situ conservation, ex situ conservation, breeding or reintroduction/reinforcement, we should also pay attention to the scientific research, germplasm conservation, environmental education and ethnic culture. We also propose to consider establishing a professional karst botanical garden in southeastern Yunnan, and hope this study can offer valuable insights for the conservation of PSESP and biodiversity in southeastern Yunnan.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Tan
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Meng Li
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan-Mei Ping
- Forestry and Grassland Bureau of Hekou Yao Autonomous County, Hekou, Yunnan, China
| | - De-Ming He
- Wenshan National Nature Reserve Administration, Wenshan, Yunnan, China
| | - Gui-Liang Zhang
- Hekou Branch Administration of Daweishan National Nature Reserve, Hekou, Yunnan, China
| | - Wei-Bang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
4
|
Yang D, Ma D, Song Z, Yang M, Xu Y. The Composition, Antioxidant and Antibacterial Activity of Essential Oils from Five Species of the Magnoliaceae Family. Molecules 2024; 29:5182. [PMID: 39519823 PMCID: PMC11547403 DOI: 10.3390/molecules29215182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The leaves of Magnoliaceae family plants contain abundant essential oils (EOs), and these species can be used in many fields due to their high industrial, medicinal, and ornamental values. This study aims to identify the main compounds of the EOs from the leaves of five common Magnoliaceae species (Michelia maudiae, Michelia hedyosperma, Michelia macclurei, Manglietia lucida, Manglietia conifer) using hydrodistillation, GC-MS analysis, and in vitro tests. Additionally, the antioxidant and antibacterial activities of the EOs were also evaluated. The results show that 151 compounds were identified across five species, with sesquiterpenes being dominant. Some key compounds (such as β-caryophyllene, δ-amorphene, β-guaiene, globulol, and β-acorenol) were common among all the species, highlighting their crucial roles in plant physiology and resilience. Other compounds (like valeranone and nerolidol in M. maudiae and β-elemene in M. macclurei) were specific, indicating different functions. Among the five species, the essential oil of M. macclurei contains β-elemene and nerolidyl acetate, and it has the weakest antioxidant activity (IC50 value: 2918.61~21,341.98 μg/mL) but the strongest antibacterial activity (inhibition zone diameter: 8.55 ± 0.93~22.92 ± 0.46 mm; LC50 value: 0.02~0.78 mg/mL). Meanwhile, the EO of M. maudiae demonstrated the best antioxidant activity (the IC50 value was 1283.58~6258.32 μg/mL) and the second-best antibacterial activity (the inhibition zone diameter ranged from 7.61 ± 0.02 to 26.92 ± 0.46 mm, and the LC50 value was 0.03~2.28 mg/mL). Overall, the EO of M. maudiae had the best comprehensive performance. Therefore, the EOs of M. macclurei and M. maudiae showed different performances in biological activity categories, and they could be developed and used in different fields, with the possibility of discovering new applications. This brings inspiration to the potential commercial and industrial uses of sesquiterpenes in Magnoliaceae.
Collapse
Affiliation(s)
| | | | | | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; (D.Y.); (D.M.); (Z.S.)
| | - Yuanyuan Xu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; (D.Y.); (D.M.); (Z.S.)
| |
Collapse
|
5
|
Zhao R, Huang N, Zhang Z, Luo W, Xiang J, Xu Y, Wang Y. Genetic Diversity Analysis and Prediction of Potential Suitable Areas for the Rare and Endangered Wild Plant Henckelia longisepala. PLANTS (BASEL, SWITZERLAND) 2024; 13:2093. [PMID: 39124211 PMCID: PMC11314309 DOI: 10.3390/plants13152093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Henckelia longisepala (H. W. Li) D. J. Middleton & Mich. Möller is a rare and endangered plant species found only in Southeastern Yunnan, China, and Northern Vietnam. It is listed as a threatened species in China and recognized as a plant species with extremely small populations (PSESP), while also having high ornamental value and utilization potential. This study used ddRAD-seq technology to quantify genetic diversity and structure for 32 samples from three extant populations of H. longisepala. The H. longisepala populations were found to have low levels of genetic diversity (Ho = 0.1216, He = 0.1302, Pi = 0.1731, FIS = 0.1456), with greater genetic differentiation observed among populations (FST = 0.3225). As indicated by genetic structure and phylogenetic analyses, samples clustered into three distinct genetic groups that corresponded to geographically separate populations. MaxEnt modeling was used to identify suitable areas for H. longisepala across three time periods and two climate scenarios (SSP1-2.6, SSP5-8.5). High-suitability areas were identified in Southeastern Yunnan Province, Northern Vietnam, and Eastern Laos. Future H. longisepala distribution was predicted to remain centered in these areas, but with a decrease in the total amount of suitable habitat. The present study provides key data on H. longisepala genetic diversity, as well as a theoretical basis for the conservation, development, and utilization of its germplasm resources.
Collapse
Affiliation(s)
- Renfen Zhao
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
| | - Nian Huang
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
| | - Zhiyan Zhang
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
| | - Wei Luo
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
| | - Jianying Xiang
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yuanjie Xu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
| | - Yizhi Wang
- College of Forestry, Southwest Forestry University, Kunming 650224, China; (R.Z.); (N.H.); (Z.Z.); (W.L.); (J.X.)
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Yang Z, Liang L, Xiang W, Wang L, Ma Q, Wang Z. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis. PLANT DIVERSITY 2024; 46:294-308. [PMID: 38798732 PMCID: PMC11119545 DOI: 10.1016/j.pld.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
Global climate change has increased concerns regarding biodiversity loss. However, many key conservation issues still required further research, including demographic history, deleterious mutation load, adaptive evolution, and putative introgression. Here we generated the first chromosome-level genome of the endangered Chinese hazelnut, Corylus chinensis, and compared the genomic signatures with its sympatric widespread C. kwechowensis-C. yunnanensis complex. We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation. Population genomics revealed that both C. chinensis and the C. kwechowensis-C. yunnanensis complex had diverged into two genetic lineages, forming a consistent pattern of southwestern-northern differentiation. Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene, whereas the widespread northern lineages have remained stable (C. chinensis) or have even recovered from population bottlenecks (C. kwechowensis-C. yunnanensis complex) during the Quaternary. Compared with C. kwechowensis-C. yunnanensis complex, C. chinensis showed significantly lower genomic diversity and higher inbreeding level. However, C. chinensis carried significantly fewer deleterious mutations than C. kwechowensis-C. yunnanensis complex, as more effective purging selection reduced the accumulation of homozygous variants. We also detected signals of positive selection and adaptive introgression in different lineages, which facilitated the accumulation of favorable variants and formation of local adaptation. Hence, both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C. chinensis. Overall, our study provides critical insights into lineage differentiation, local adaptation, and the potential for future recovery of endangered trees.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhaoshan Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
7
|
Liu Y, Cai L, Sun W. Transcriptome data analysis provides insights into the conservation of Michelia lacei, a plant species with extremely small populations distributed in Yunnan province, China. BMC PLANT BIOLOGY 2024; 24:200. [PMID: 38500068 PMCID: PMC10949798 DOI: 10.1186/s12870-024-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
8
|
Wang ZF, Fu L, Yu EP, Zhu WG, Zeng SJ, Cao HL. Chromosome-level genome assembly and demographic history of Euryodendron excelsum in monotypic genus endemic to China. DNA Res 2024; 31:dsad028. [PMID: 38147541 PMCID: PMC10781514 DOI: 10.1093/dnares/dsad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Euryodendron excelsum is in a monotypic genus Euryodendron, endemic to China. It has intermediate morphisms in the Pentaphylacaceae or Theaceae families, which make it distinct. Due to anthropogenic disturbance, E. excelsum is currently found in very restricted and fragmented areas with extremely small populations. Although much research and effort has been applied towards its conservation, its long-term survival mechanisms and evolutionary history remain elusive, especially from a genomic aspect. Therefore, using a combination of long/short whole genome sequencing, RNA sequencing reads, and Hi-C data, we assembled and annotated a high-quality genome for E. excelsum. The genome assembly of E. excelsum comprised 1,059,895,887 bp with 99.66% anchored into 23 pseudo-chromosomes and a 99.0% BUSCO completeness. Comparative genomic analysis revealed the expansion of terpenoid and flavonoid secondary metabolite genes, and displayed a tandem and/or proximal duplication framework of these genes. E. excelsum also displayed genes associated with growth, development, and defence adaptation from whole genome duplication. Demographic analysis indicated that its fluctuations in population size and its recent population decline were related to cold climate changes. The E. excelsum genome assembly provides a highly valuable resource for evolutionary and ecological research in the future, aiding its conservation, management, and restoration.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Lin Fu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - En-Ping Yu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Guang Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Song-Jun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Hong-Lin Cao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| |
Collapse
|
9
|
Lin L, Cai L, Huang H, Ming S, Sun W. Transcriptome data reveals the conservation genetics of Cypripedium forrestii, a plant species with extremely small populations endemic to Yunnan, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1303625. [PMID: 38357270 PMCID: PMC10864665 DOI: 10.3389/fpls.2024.1303625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
The Cypripedium forrestii is an orchid species with extremely small populations (PSESP) in Yunnan, China. C. forrestii is range-restricted and less-studied than many orchid species, and it is exposed to various threats to its survival. We investigated its potential habitats and collected 52 samples from eight locations, as well as two outgroup species for reference. We developed genetic markers (SNPs) for C. forrestii based on transcriptome sequencing (RNA-seq) data, and analyzed the genetic diversity, population structure, gene flow and demographic history of C. forrestii in detail. C. forrestii is a taxonomically independent species to protect. We found that the genetic diversity of C. forrestii was very low (1.7e-4) compared with other endangered species. We identified three genetic clusters, and several populations with distinct genetic backgrounds. Most genetic diversity was found within sampling sites (87.87%) and genetic clusters (91.39%). Gene flow has been greatly limited over the most recent generations, probably due to geographical distance, historical climate change and habitat fragmentation. We also detected a severe bottleneck event brought about by the recent population constraints. These factors, together with its reproductive characteristics, contribute to the population fragmentation and low genetic diversity of C. forrestii. Based on our findings, we suggest an integrative conservation strategy to protect and recover the genetic diversity of C. forrestii and a further comprehensive study of its ecological traits in the future.
Collapse
Affiliation(s)
- Liewen Lin
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hua Huang
- Lijiang Alpine Botanic Garden/ Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengping Ming
- Lijiang Alpine Botanic Garden/ Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Lijiang Alpine Botanic Garden/ Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
10
|
Liu Y, Wang H, Yang J, Dao Z, Sun W. Conservation genetics and potential geographic distribution modeling of Corybas taliensis, a small 'sky Island' orchid species in China. BMC PLANT BIOLOGY 2024; 24:11. [PMID: 38163918 PMCID: PMC10759615 DOI: 10.1186/s12870-023-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Corybas taliensis is an endemic species of sky islands in China. Its habitat is fragile and unstable, and it is likely that the species is threatened. However, it is difficult to determine the conservation priority or unit without knowing the genetic background and the overall distribution of this species. In this study, we used double digest restriction-site associated DNA-sequencing (ddRAD-seq) to investigate the conservation genomics of C. taliensis. At the same time, we modeled the extent of suitable habitat for C. taliensis in present and future (2030 and 2090) habitat using the maximum-entropy (MaxEnt) model. RESULTS The results suggested that the related C. fanjingshanensis belongs to C. taliensis and should not be considered a separate species. All the sampling locations were divided into three genetic groups: the Sichuan & Guizhou population (SG population), the Hengduan Mountains population (HD population) and Himalayan population (HM population), and we found that there was complex gene flow between the sampling locations of HD population. MT was distinct genetically from the other sampling locations due to the unique environment in Motuo. The genetic diversity (π, He) of C. taliensis was relatively high, but its contemporary effective population size (Ne) was small. C. taliensis might be currently affected by inbreeding depression, although its large population density may be able to reduce the effect of this. The predicted areas of suitable habitat currently found in higher mountains will not change significantly in the future, and these suitable habitats are predicted to spread to other higher mountains under future climate change. However, suitable habitat in relatively low altitude areas may disappear in the future. This suggests that C. taliensis will be caught in a 'summit trap' in low altitude areas, however, in contrast, the high altitude of the Himalaya and the Hengduan Mountains are predicted to act as 'biological refuges' for C. taliensis in the future. CONCLUSIONS These results not only provide a new understanding of the genetic background and potential resource distribution of C. taliensis, but also lay the foundation for its conservation and management.
Collapse
Affiliation(s)
- Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huichun Wang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
| |
Collapse
|
11
|
Cai L, Liu D, Yang F, Zhang R, Yun Q, Dao Z, Ma Y, Sun W. The chromosome-scale genome of Magnolia sinica (Magnoliaceae) provides insights into the conservation of plant species with extremely small populations (PSESP). Gigascience 2024; 13:giad110. [PMID: 38206588 PMCID: PMC10999834 DOI: 10.1093/gigascience/giad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first time a high-quality chromosome-scale genome sequence from M. sinica, by combining Illumina and ONT data with Hi-C scaffolding methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified repeats constituted approximately 57% of the genome, and 43,473 protein-coding genes were predicted. Phylogenetic analysis shows that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core angiosperms. In our study, a total of 21 individuals from the 5 remnant populations of M. sinica, as well as 22 specimens belonging to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic diversity (θw = 0.01126 and θπ = 0.01158) than other related species in the Magnoliaceae. However, population structure analysis suggested that the genetic differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different models consistently revealed that 2 bottleneck events occurred. The contemporary effective population size of M. sinica was estimated to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive strategies for the conservation of these 5 different populations of M. sinica. Overall, this high-quality genome will be a valuable genomic resource for conservation of M. sinica.
Collapse
Affiliation(s)
- Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengmao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261000, Shandong, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
12
|
Zhao J, Chen H, Li G, Jumaturti MA, Yao X, Hu Y. Phylogenetics Study to Compare Chloroplast Genomes in Four Magnoliaceae Species. Curr Issues Mol Biol 2023; 45:9234-9251. [PMID: 37998755 PMCID: PMC10670740 DOI: 10.3390/cimb45110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Magnoliaceae, a family of perennial woody plants, contains several endangered species whose taxonomic status remains ambiguous. The study of chloroplast genome information can help in the protection of Magnoliaceae plants and confirmation of their phylogenetic relationships. In this study, the chloroplast genomes were sequenced, assembled, and annotated in Woonyoungia septentrionalis and three Michelia species (Michelia champaca, Michelia figo, and Michelia macclurei). Comparative analyses of genomic characteristics, repetitive sequences, and sequence differences were performed among the four Magnoliaceae plants, and phylogenetic relationships were constructed with twenty different magnolia species. The length of the chloroplast genomes varied among the four studied species ranging from 159,838 bp (Woonyoungia septentrionalis) to 160,127 bp (Michelia macclurei). Four distinct hotspot regions were identified based on nucleotide polymorphism analysis. They were petA-psbJ, psbJ-psbE, ndhD-ndhE, and rps15-ycf1. These gene fragments may be developed and utilized as new molecular marker primers. By using Liriodendron tulipifera and Liriodendron chinense as outgroups reference, a phylogenetic tree of the four Magnoliaceae species and eighteen other Magnoliaceae species was constructed with the method of Shared Coding Sequences (CDS). Results showed that the endangered species, W. septentrionalis, is relatively genetically distinct from the other three species, indicating the different phylogenetic processes among Magnoliaceae plants. Therefore, further genetic information is required to determine the relationships within Magnoliaceae. Overall, complete chloroplast genome sequences for four Magnoliaceae species reported in this paper have shed more light on phylogenetic relationships within the botanical group.
Collapse
Affiliation(s)
- Jianyun Zhao
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hu Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China;
| | - Gaiping Li
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Maimaiti Aisha Jumaturti
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiaomin Yao
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ying Hu
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Zhou C, Xia S, Wen Q, Song Y, Jia Q, Wang T, Liu L, Ouyang T. Genetic structure of an endangered species Ormosia henryi in southern China, and implications for conservation. BMC PLANT BIOLOGY 2023; 23:220. [PMID: 37098472 PMCID: PMC10131447 DOI: 10.1186/s12870-023-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.
Collapse
Affiliation(s)
- Chengchuan Zhou
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Shiqi Xia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Qiang Wen
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Ying Song
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Quanquan Jia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Tian Wang
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Liting Liu
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China.
| | - Tianlin Ouyang
- Jiangxi Provincial Forestry Science and Technology Experiment Center, Ganzhou, China.
| |
Collapse
|
14
|
Zhang T, Meng J, Yang F, Li X, Yin X, Zhang J, He S. Genome-wide assessment of population genetic and demographic history in Magnolia odoratissima based on SLAF-seq. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|