1
|
Crumière M, de Vallée A, Rascle C, Gillet FX, Nahar S, van Kan JAL, Bruel C, Poussereau N, Choquer M. A LysM Effector Mediates Adhesion and Plant Immunity Suppression in the Necrotrophic Fungus Botrytis cinerea. J Basic Microbiol 2025; 65:e2400552. [PMID: 39655398 DOI: 10.1002/jobm.202400552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 05/04/2025]
Abstract
LysM effectors are suppressors of chitin-triggered plant immunity in biotrophic and hemibiotrophic fungi. In necrotrophic fungi, LysM effectors might induce a mechanism to suppress host immunity during the short asymptomatic phase they establish before these fungi activate plant defenses and induce host cell death leading to necrosis. Here, we characterize a secreted LysM protein from a major necrotrophic fungus, Botrytis cinerea, called BcLysM1. Transcriptional induction of BcLysM1 gene was observed in multicellular appressoria, called infection cushions, in unicellular appressoria and in the early phase of infection on bean leaves. We confirmed that BcLysM1 protein binds chitin in the fungus cell wall and protects hyphae against degradation by external chitinases. This effector is also able to suppress the chitin-induced ROS burst in Arabidopsis thaliana, suggesting sequestration of chitooligosaccharides in apoplast during infection. Moreover, contribution of BcLysM1 in infection initiation and in adhesion to bean leaf surfaces were demonstrated. Our data show for the first time that a LysM effector can play a dual role in mycelial adhesion and suppression of chitin-triggered host immunity, both of which occur during the early asymptomatic phase of infection by necrotrophic fungi.
Collapse
Affiliation(s)
- Mélanie Crumière
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Christine Rascle
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - François-Xavier Gillet
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Shamsun Nahar
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Christophe Bruel
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Mathias Choquer
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| |
Collapse
|
2
|
Chang N, Liu R, Lu C, Lai Y, Xu Q, Yang Y, Li Y, Ling J, Xie B, Zhao W, Mao Z, Zhao J. Role of Methyl thiobutyrate to Botrytis cinerea on cucumber. FRONTIERS IN PLANT SCIENCE 2025; 16:1551274. [PMID: 40265121 PMCID: PMC12013339 DOI: 10.3389/fpls.2025.1551274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Introduction Botrytis cinerea is a major agricultural pathogen that causes significant economic Q7 losses worldwide, affecting various crops, including cucumbers. Developing environmentally sustainable control strategies for this pathogen is crucial. Methyl thiobutyrate (MTB), a small organic molecule identified in the volatile organic compounds (VOCs) of biocontrol bacteria, has demonstrated potential in inhibiting B. cinerea both in vitro and in vivo. Methods In this study, the efficacy of MTB against cucumber gray mold disease was examined by assessing the in vitro and in vivo activities of MTB against B. cinerea and analyzing the transcriptomic data from MTB-treated cucumber leaves infected with B. cinerea. Results and discussion This study shows that a 2 mg/mL solution of MTB inhibits B. cinerea growth by 98.6% in vitro. In vivo, MTB effectively reduces B. cinerea infection in cucumbers, alleviates necrotic damage in leaf tissues, and significantly reduces disease severity. Transcriptomic analysis reveals that MTB activates the plant immune responses by modulating key MAPK cascade signaling genes and upregulating basal defense genes, including chitinase, pectinase, and lignin biosynthesis genes. Furthermore, MTB influences the signaling pathways of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), resulting in the upregulation of genes such as peroxidase (POD), phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), and ethyleneresponsive transcription factors (ERFs). These results demonstrate the potential of MTB as an effective biocontrol agent against B. cinerea and provide valuable insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Nv Chang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cuihua Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqing Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Laevens GCS, Dolson WC, Drapeau MM, Telhig S, Ruffell SE, Rose DM, Glick BR, Stegelmeier AA. The Good, the Bad, and the Fungus: Insights into the Relationship Between Plants, Fungi, and Oomycetes in Hydroponics. BIOLOGY 2024; 13:1014. [PMID: 39765681 PMCID: PMC11673877 DOI: 10.3390/biology13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems. The symptomatology and mechanisms of pathogenesis for Botrytis, Colletotrichum, Fulvia, Fusarium, Phytophthora, Pythium, and Sclerotinia are explored for phytopathogenic fungi that target floral organs, leaves, roots, and vasculature of economically important hydroponic crops. Additionally, this review thoroughly explores the use of plant growth-promoting fungi (PGPF) to combat phytopathogens and increase hydroponic crop productivity; details of PGP strategies and mechanisms are discussed. The benefits of Aspergillus, Penicillium, Taloromyces, and Trichoderma to hydroponics systems are explored in detail. The culmination of these areas of research serves to improve the current understanding of the role of beneficial and pathogenic fungi, specifically in the hydroponic microbiome.
Collapse
Affiliation(s)
- Grace C. S. Laevens
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - William C. Dolson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Michelle M. Drapeau
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Soufiane Telhig
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Sarah E. Ruffell
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | | |
Collapse
|
4
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
5
|
Liu L, Xia Y, Li Y, Zhou Y, Su X, Yan X, Wang Y, Liu W, Cheng H, Wang Y, Yang Q. Inhibition of chitin deacetylases to attenuate plant fungal diseases. Nat Commun 2023; 14:3857. [PMID: 37385996 PMCID: PMC10310857 DOI: 10.1038/s41467-023-39562-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Phytopathogenic fungi secrete chitin deacetylase (CDA) to escape the host's immunological defense during infection. Here, we showed that the deacetylation activity of CDA toward chitin is essential for fungal virulence. Five crystal structures of two representative and phylogenetically distant phytopathogenic fungal CDAs, VdPDA1 from Verticillium dahliae and Pst_13661 from Puccinia striiformis f. sp. tritici, were obtained in ligand-free and inhibitor-bound forms. These structures suggested that both CDAs have an identical substrate-binding pocket and an Asp-His-His triad for coordinating a transition metal ion. Based on the structural identities, four compounds with a benzohydroxamic acid (BHA) moiety were obtained as phytopathogenic fungal CDA inhibitors. BHA exhibited high effectiveness in attenuating fungal diseases in wheat, soybean, and cotton. Our findings revealed that phytopathogenic fungal CDAs share common structural features, and provided BHA as a lead compound for the design of CDA inhibitors aimed at attenuating crop fungal diseases.
Collapse
Affiliation(s)
- Lin Liu
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518000, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yingchen Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, 116024, Dalian, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518000, Shenzhen, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
6
|
Proctor DM, Drummond RA, Lionakis MS, Segre JA. One population, multiple lifestyles: Commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 2023; 31:539-553. [PMID: 37054674 PMCID: PMC10155287 DOI: 10.1016/j.chom.2023.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023]
Abstract
Candida auris and Candida albicans can result in invasive fungal diseases. And yet, these species can stably and asymptomatically colonize human skin and gastrointestinal tracts. To consider these disparate microbial lifestyles, we first review factors shown to influence the underlying microbiome. Structured by the damage response framework, we then consider the molecular mechanisms deployed by C. albicans to switch between commensal and pathogenic lifestyles. Next, we explore this framework with C. auris to highlight how host physiology, immunity, and/or antibiotic receipt are associated with progression from colonization to infection. While treatment with antibiotics increases the risk that an individual will succumb to invasive candidiasis, the underlying mechanisms remain unclear. Here, we describe several hypotheses that may explain this phenomenon. We conclude by highlighting future directions integrating genomics with immunology to advance our understanding of invasive candidiasis and human fungal disease.
Collapse
Affiliation(s)
- Diana M Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|