1
|
Mosquera GM, Marín F, Carabajo-Hidalgo A, Asbjornsen H, Célleri R, Crespo P. Ecohydrological assessment of the water balance of the world's highest elevation tropical forest (Polylepis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173671. [PMID: 38825194 DOI: 10.1016/j.scitotenv.2024.173671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Polylepis trees grow at elevations above the continuous tree line (3000-5000 m a.s.l.) across the Andes. They tolerate extreme environmental conditions, making them sensitive bioindicators of global climate change. Therefore, investigating their ecohydrological role is key to understanding how the water cycle of Andean headwaters could be affected by predicted changes in environmental conditions, as well as ongoing Polylepis reforestation initiatives in the region. We estimate, for the first time, the annual water balance of a mature Polylepis forest (Polylepis reticulata) catchment (3780 m a.s.l.) located in the south Ecuadorian páramo using a unique set of field ecohydrological measurements including gross rainfall, throughfall, streamflow, and xylem sap flow in combination with the characterization of forest and soil features. We also compare the forest water balance with that of a tussock grass (Calamagrostis intermedia) catchment, the dominant páramo vegetation. Annual gross rainfall during the study period (April 2019-March 2020) was 1290.6 mm yr-1. Throughfall in the Polylepis forest represented 61.2 % of annual gross rainfall. Streamflow was the main component of the water balance of the forested site (59.6 %), while its change in soil water storage was negligible (<1 %). Forest evapotranspiration was 54.0 %, with evaporation from canopy interception (38.8 %) more than twice as high as transpiration (15.1 %). The error in the annual water balance of the Polylepis catchment was small (<15 %), providing confidence in the measurements and assumptions used to estimate its components. In comparison, streamflow and evapotranspiration at the grassland site accounted for 63.7 and 36.0 % of the water balance, respectively. Although evapotranspiration was larger in the forest catchment, its water yield was only marginally reduced (<4 %) in relation to the grassland catchment. The substantially higher soil organic matter content in the forest site (47.6 %) compared to the grassland site (31.8 %) suggests that even though Polylepis forests do not impair the hydrological function of high-Andean catchments, their presence contributes to carbon storage in the litter layer of the forest and the underlying soil. These findings provide key insights into the vegetation-water‑carbon nexus in high Andean ecosystems, which can serve as a basis for future ecohydrological studies and improved management of páramo natural resources considering changes in land use and global climate.
Collapse
Affiliation(s)
- Giovanny M Mosquera
- Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHICA), Universidad de Cuenca, Cuenca, Ecuador; Departamento de Ingeniería & Grupo de Glaciología y Ecohidrología de Montañas Andinas (GEMS), Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.
| | - Franklin Marín
- Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Universidad de Cuenca, Cuenca, Ecuador; Laboratory of Quantitative Forest Ecosystem Science, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Aldemar Carabajo-Hidalgo
- Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHICA), Universidad de Cuenca, Cuenca, Ecuador; Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Barcelona, Spain
| | - Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Rolando Célleri
- Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHICA), Universidad de Cuenca, Cuenca, Ecuador; Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador
| | - Patricio Crespo
- Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHICA), Universidad de Cuenca, Cuenca, Ecuador; Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador.
| |
Collapse
|
2
|
Lamour J, Souza DC, Gimenez BO, Higuchi N, Chave J, Chambers J, Rogers A. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. PLANT, CELL & ENVIRONMENT 2023; 46:3806-3821. [PMID: 37635450 DOI: 10.1111/pce.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.
Collapse
Affiliation(s)
- Julien Lamour
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Daisy C Souza
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Bruno O Gimenez
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
- Department of Geography, University of California, Berkeley, California, USA
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Jérôme Chave
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Jeffrey Chambers
- Department of Geography, University of California, Berkeley, California, USA
| | - Alistair Rogers
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
3
|
Ampornpitak R, Nathalang A, Tor-ngern P. Water-use characteristics of Syzygium antisepticum and Adinandra integerrima in a secondary forest of Khao Yai National Park in Thailand with implications for environmental management. PeerJ 2023; 11:e16525. [PMID: 38050611 PMCID: PMC10693818 DOI: 10.7717/peerj.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Background Southeast Asia has experienced widespread deforestation and change in land use. Consequently, many reforestation projects have been initiated in this region. However, it is imperative to carefully choose the tree species for planting, especially in light of the increasing climate variability and the potential alteration of plantation on the watershed water balance. Thus, the information regarding water-use characteristics of various tree species and sizes is critical in the tree species selection for reforestation. Methods We estimated tree water use (T) of dominant species including Syzygium antisepticum and Adinandra integerrima, hereafter Sa and Ai, respectively, in a secondary tropical forest in Khao Yai National Park, Thailand, using sap flow data, and compared T between species and size classes. Additionally, we evaluated the responses of T of both species in each size class to environmental factors including soil moisture and vapor pressure deficit (VPD). Results Results showed consistently higher T in Sa compared to Ai across ranges of VPD and soil moisture. Under low soil moisture, T of Sa responded to VPD, following a saturating exponential pattern while Ai maintained T across different VPD levels, irrespective of tree size. No responses of T to VPD were observed in either species when soil water was moderate. When soil moisture was high, T of both species significantly increased and saturated at high VPD, albeit the responses were less sensitive in large trees. Our results imply that Ai may be suitable for reforestation in water-limited areas where droughts frequently occur to minimize reforestation impact on water availability to downstream ecosystems. In contrast, Sa should be planted in regions with abundant and reliable water resources. However, a mixed species plantation should be generally considered to increase forest resilience to increasing climate variation.
Collapse
Affiliation(s)
- Ratchanon Ampornpitak
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pantana Tor-ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Brum M, Vadeboncoeur M, Asbjornsen H, Puma Vilca BL, Galiano D, Horwath AB, Metcalfe DB. Ecophysiological controls on water use of tropical cloud forest trees in response to experimental drought. TREE PHYSIOLOGY 2023; 43:1514-1532. [PMID: 37209136 DOI: 10.1093/treephys/tpad070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Tropical montane cloud forests (TMCFs) are expected to experience more frequent and prolonged droughts over the coming century, yet understanding of TCMF tree responses to moisture stress remains weak compared with the lowland tropics. We simulated a severe drought in a throughfall reduction experiment (TFR) for 2 years in a Peruvian TCMF and evaluated the physiological responses of several dominant species (Clusia flaviflora Engl., Weinmannia bangii (Rusby) Engl., Weinmannia crassifolia Ruiz & Pav. and Prunus integrifolia (C. Presl) Walp). Measurements were taken of (i) sap flow; (ii) diurnal cycles of stem shrinkage, stem moisture variation and water-use; and (iii) intrinsic water-use efficiency (iWUE) estimated from foliar δ13C. In W. bangii, we used dendrometers and volumetric water content (VWC) sensors to quantify daily cycles of stem water storage. In 2 years of sap flow (Js) data, we found a threshold response of water use to vapor pressure deficit vapor pressure deficit (VPD) > 1.07 kPa independent of treatment, though control trees used more soil water than the treatment trees. The daily decline in water use in the TFR trees was associated with a strong reduction in both morning and afternoon Js rates at a given VPD. Soil moisture also affected the hysteresis strength between Js and VPD. Reduced hysteresis under moisture stress implies that TMCFs are strongly dependent on shallow soil water. Additionally, we suggest that hysteresis can serve as a sensitive indicator of environmental constraints on plant function. Finally, 6 months into the experiment, the TFR treatment significantly increased iWUE in all study species. Our results highlight the conservative behavior of TMCF tree water use under severe soil drought and elucidate physiological thresholds related to VPD and its interaction with soil moisture. The observed strongly isohydric response likely incurs a cost to the carbon balance of the tree and reduces overall ecosystem carbon uptake.
Collapse
Affiliation(s)
- Mauro Brum
- Department of Natural Resources & the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
| | - Matthew Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Heidi Asbjornsen
- Department of Natural Resources & the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Beisit L Puma Vilca
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province 08000, Peru
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Darcy Galiano
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province 08000, Peru
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Aline B Horwath
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Daniel B Metcalfe
- Department of Ecology & Environmental Science, Umeå University, KBC-huset, Linnaeus väg 6, Umeå 901 87, Sweden
| |
Collapse
|