1
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
2
|
Septiani P, Pramesti Y, Ghildan M, Aprilia KZ, Awaludin R, Medina S, Subandiyah S, Meitha K. RNAi-based biocontrol for crops: a revised expectation for a non-recent technology. PLANTA 2025; 261:44. [PMID: 39862243 DOI: 10.1007/s00425-025-04625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment. RNA interference mechanism is one of the promising technologies to biologically control pests and pathogens in crops, suppressing them by cancelling protein synthesis related to parasitism/pathogenesis. The transgenic approach to generate host-induced gene silencing demonstrated high efficacy in controlling pests or pathogens by RNAi mechanism. However, transgenic technology is tightly regulated and still negatively perceived by global consumers. This review presents the basic biology of small RNA, the main actor of the RNAi mechanism, and tested non-transgenic approaches to induce RNAi exogenously. Novel avenues are offered by the discovery of cross-kingdom RNAi, that naturally, plants also deliver small RNA to suppress the growth of their threats. Future applications of non-transgenic RNAi-based biocontrol will involve the production of dsRNA on an industrial scale. Here, the attempts to provide dsRNA for routine application in farms are also discussed, emphasizing that the technology must be accessible by the countries with the greatest population which mostly are poorer ones.
Collapse
Affiliation(s)
- Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Yonadita Pramesti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Muhammad Ghildan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Kenia Zora Aprilia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Rizki Awaludin
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Safira Medina
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No.1 Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Siti Subandiyah
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No.1 Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
- Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
| |
Collapse
|
3
|
Ruf A, Thieron H, Nasfi S, Lederer B, Fricke S, Adeshara T, Postma J, Blumenkamp P, Kwon S, Brinkrolf K, Feldbrügge M, Goesmann A, Kehr J, Steinbrenner J, Šečić E, Göhre V, Weiberg A, Kogel K, Panstruga R, Robatzek S, the exRNA consortium. Broad-scale phenotyping in Arabidopsis reveals varied involvement of RNA interference across diverse plant-microbe interactions. PLANT DIRECT 2024; 8:e70017. [PMID: 39553386 PMCID: PMC11565445 DOI: 10.1002/pld3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
RNA interference (RNAi) is a crucial mechanism in immunity against infectious microbes through the action of DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins. In the case of the taxonomically diverse fungal pathogen Botrytis cinerea and the oomycete Hyaloperonospora arabidopsidis, plant DCL and AGO proteins have proven roles as negative regulators of immunity, suggesting functional specialization of these proteins. To address this aspect in a broader taxonomic context, we characterized the colonization pattern of an informative set of DCL and AGO loss-of-function mutants in Arabidopsis thaliana upon infection with a panel of pathogenic microbes with different lifestyles, and a fungal mutualist. Our results revealed that, depending on the interacting pathogen, AGO1 acts as a positive or negative regulator of immunity, while AGO4 functions as a positive regulator. Additionally, AGO2 and AGO10 positively modulated the colonization by a fungal mutualist. Therefore, analyzing the role of RNAi across a broader range of plant-microbe interactions has identified previously unknown functions for AGO proteins. For some pathogen interactions, however, all tested mutants exhibited wild-type-like infection phenotypes, suggesting that the roles of AGO and DCL proteins in these interactions may be more complex to elucidate.
Collapse
Affiliation(s)
| | - Hannah Thieron
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Sabrine Nasfi
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | | | - Sebastian Fricke
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Trusha Adeshara
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Johannes Postma
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Blumenkamp
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Karina Brinkrolf
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Alexander Goesmann
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Julia Kehr
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Jens Steinbrenner
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Ena Šečić
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
- Hochschule DarmstadtDarmstadtGermany
| | | | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
- Institut de biologie moléculaire des plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Ralph Panstruga
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
4
|
Cao Y, Yang W, Ma J, Cheng Z, Zhang X, Liu X, Wu X, Zhang J. An Integrated Framework for Drought Stress in Plants. Int J Mol Sci 2024; 25:9347. [PMID: 39273296 PMCID: PMC11395155 DOI: 10.3390/ijms25179347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
With global warming, drought stress is becoming increasingly severe, causing serious impacts on crop yield and quality. In order to survive under adverse conditions such as drought stress, plants have evolved a certain mechanism to cope. The tolerance to drought stress is mainly improved through the synergistic effect of regulatory pathways, such as transcription factors, phytohormone, stomatal movement, osmotic substances, sRNA, and antioxidant systems. This study summarizes the research progress on plant drought resistance, in order to provide a reference for improving plant drought resistance and cultivating drought-resistant varieties through genetic engineering technology.
Collapse
Affiliation(s)
- Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Juan Ma
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
6
|
Aina O, Bakare OO, Fadaka AO, Keyster M, Klein A. Plant biomarkers as early detection tools in stress management in food crops: a review. PLANTA 2024; 259:60. [PMID: 38311674 PMCID: PMC10838863 DOI: 10.1007/s00425-024-04333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
MAIN CONCLUSION Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.
Collapse
Affiliation(s)
- Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Olalekan O Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu, 121001, Nigeria
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Adewale O Fadaka
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| |
Collapse
|
7
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
8
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
9
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
10
|
Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS. Exogenous dsRNA Induces RNA Interference of a Chalcone Synthase Gene in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23105325. [PMID: 35628133 PMCID: PMC9142100 DOI: 10.3390/ijms23105325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Recent investigations have shown the possibility of artificial induction of RNA interference (RNAi) via plant foliar treatments with naked double-stranded RNA (dsRNA) to silence essential genes in plant fungal pathogens or to target viral RNAs. Furthermore, several studies have documented the downregulation of plant endogenous genes via external application of naked gene-specific dsRNAs and siRNAs to the plant surfaces. However, there are limited studies on the dsRNA processing and gene silencing mechanisms after external dsRNA application. Such studies would assist in the development of innovative tools for crop improvement and plant functional studies. In this study, we used exogenous gene-specific dsRNA to downregulate the gene of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, in Arabidopsis. The nonspecific NPTII-dsRNA encoding the nonrelated neomycin phosphotransferase II bacterial gene was used to treat plants in order to verify that any observed effects and processing of AtCHS mRNA were sequence specific. Using high-throughput small RNA (sRNA) sequencing, we obtained six sRNA-seq libraries for plants treated with water, AtCHS-dsRNA, or NPTII-dsRNA. After plant foliar treatments, we detected the emergence of a large number of AtCHS- and NPTII-encoding sRNAs, while there were no such sRNAs after control water treatment. Thus, the exogenous AtCHS-dsRNAs were processed into siRNAs and induced RNAi-mediated AtCHS gene silencing. The analysis showed that gene-specific sRNAs mapped to the AtCHS and NPTII genes unevenly with peak read counts at particular positions, involving primarily the sense strand, and documented a gradual decrease in read counts from 17-nt to 30-nt sRNAs. Results of the present study highlight a significant potential of exogenous dsRNAs as a promising strategy to induce RNAi-based downregulation of plant gene targets for plant management and gene functional studies.
Collapse
|
11
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|