1
|
Yang R, Ma Y, Yang Z, Pu Y, Liu M, Du J, Xu Z, Xu Z, Zhang S, Zhang H, Zhang W, Yu D, Kan G. Knockdown of β-conglycinin α' and α subunits alters seed protein composition and improves salt tolerance in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1488-1507. [PMID: 39383405 DOI: 10.1111/tpj.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Soybean is an important plant source of protein worldwide. Increasing demands for soybean can be met by improving the quality of its seed protein. In this study, GmCG-1, which encodes the β-conglycinin α' subunit, was identified via combined genome-wide association study and transcriptome analysis. We subsequently knocked down GmCG-1 and its paralogues GmCG-2 and GmCG-3 with CRISPR-Cas9 technology and generated two stable multigene knockdown mutants. As a result, the β-conglycinin content decreased, whereas the 11S/7S ratio, total protein content and sulfur-containing amino acid content significantly increased. Surprisingly, the globulin mutant exhibited salt tolerance in both the germination and seedling stages. Little is known about the relationship between seed protein composition and the salt stress response in soybean. Metabonomics and RNA-seq analysis indicated that compared with the WT, the mutant was formed through a pathway that was more similar to that of active salicylic acid biosynthesis; however, the synthesis of cytokinin exhibited greater defects, which could lead to increased expression of plant dehydrin-related salt tolerance proteins and cell membrane ion transporters. Population evolution analysis suggested that GmCG-1, GmCG-2, and GmCG-3 were selected during soybean domestication. The soybean accessions harboring GmCG-1Hap1 presented relatively high 11S/7S ratios and relatively high salt tolerance. In conclusion, knockdown of the β-conglycinin α and α' subunits can improve the nutritional quality of soybean seeds and increase the salt tolerance of soybean plants, providing a strategy for designing soybean varieties with high nutritional value and high salt tolerance.
Collapse
Affiliation(s)
- Rufei Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yujie Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yixiang Pu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Mengyu Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jingyi Du
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhiri Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zefei Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Zhang
- College of Agronomy, Henan University of Science and Technology, Henan, China
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Xiong X, Wang W, Bi S, Liu Y. Application of legumes in plant-based milk alternatives: a review of limitations and solutions. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38881295 DOI: 10.1080/10408398.2024.2365353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In recent years, a global shift has been observed toward reducing the consumption of animal-derived foods in favor of healthier and more sustainable dietary choices. This has led to a steady growth in the market for plant-based milk alternatives (PBMAs). Projections suggest that this market will reach a value of USD 69.8 billion by 2030. Legumes, being traditional and nutritious ingredients for PMBAs, are rich in proteins, dietary fibers, and other nutrients, with potential health benefits such as anticancer and cardiovascular disease prevention. In this review, the application of 12 legumes in plant-based milk alternatives was thoroughly discussed for the first time. However, compared to milk, processing of legume-based beverages can lead to deficiencies such as nutritional imbalance, off-flavor, and emulsion stratification. Considering the potential and challenges associated with legume-based beverages, this review aims to provide a scientific comparison between legume-based beverages and cow's milk in terms of nutritional quality, organoleptic attributes and stability, and to summarize ways to improve the deficiencies of legume-based beverages in terms of raw materials and processing method improvements. In conclusion, the legume-based beverage industry will be better enhanced and developed by improving the issues.
Collapse
Affiliation(s)
- Xiaoying Xiong
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wendong Wang
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
3
|
Wang XH, Tai ZJ, Song XJ, Li ZJ, Zhang DJ. Effects of Germination on the Structure, Functional Properties, and In Vitro Digestibility of a Black Bean ( Glycine max (L.) Merr.) Protein Isolate. Foods 2024; 13:488. [PMID: 38338623 PMCID: PMC10855124 DOI: 10.3390/foods13030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The utilization of black beans as a protein-rich ingredient presents remarkable prospects in the protein food industry. The objective of this study was to assess the impact of germination treatment on the physicochemical, structural, and functional characteristics of a black bean protein isolate. The findings indicate that germination resulted in an increase in both the total and soluble protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate decreased in the solution, while the absolute value of the zeta potential increased. The above results show that the stability of the solution was improved. The contents of β-sheet and β-turn gradually decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate and its polypeptide chain were prolonged, and the foaming property, emulsification property and in vitro digestibility were significantly improved after germination. Therefore, germination not only improves functional properties, but also nutritional content.
Collapse
Affiliation(s)
- Xin-Hui Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhen-Jia Tai
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xue-Jian Song
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhi-Jiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dong-Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
4
|
Nagesh CR, Prashat G R, Goswami S, Bharadwaj C, Praveen S, Ramesh SV, Vinutha T. Sulfate transport and metabolism: strategies to improve the seed protein quality. Mol Biol Rep 2024; 51:242. [PMID: 38300326 DOI: 10.1007/s11033-023-09166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.
Collapse
Affiliation(s)
- C R Nagesh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rama Prashat G
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S V Ramesh
- ICAR-Central Plantation Crops Research Institute, 671 124, Kasaragod, Kerala, India.
| | - T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|