1
|
Chaudhary A, Hsiao YC, Jessica Yeh FL, Župunski M, Zhang H, Aizezi Y, Malkovskiy A, Grossmann G, Wu HM, Cheung AY, Xu SL, Wang ZY. FERONIA signaling maintains cell wall integrity during brassinosteroid-induced cell expansion in Arabidopsis. MOLECULAR PLANT 2025; 18:603-618. [PMID: 39916326 PMCID: PMC11981838 DOI: 10.1016/j.molp.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
Plant cell expansion is regulated by hormones and driven by turgor pressure, which stretches the cell wall and can potentially cause wall damage or rupture. How plant cells avoid cell wall rupture during hormone-induced rapid cell expansion remains poorly understood. Here, we show that the wall-sensing receptor kinase FERONIA (FER) plays an essential role in maintaining cell wall integrity during brassinosteroid (BR)-induced cell elongation. Compared with the wild type, the BR-treated fer mutants display an increased initial acceleration of cell elongation, increased cell wall damage and rupture, reduced production of reactive oxygen species (ROS), and enhanced cell wall acidification. Long-term treatments of fer with high concentrations of BR cause stress responses and reduce growth, whereas osmolytes, reducing turgor, alleviate the defects. These results show that BR-induced cell elongation causes damage to cell walls and the release of cell wall fragments that activate FER, which promotes ROS production, attenuates apoplastic acidification, and slows cell elongation, thereby preventing further cell wall damage and rupture. Furthermore, we show that BR signaling promotes FER accumulation at the plasma membrane (PM). When the BR level is low, the GSK3-like kinase BIN2 phosphorylates FER to reduce FER accumulation and translocation from the endoplasmic reticulum to PM. BR-induced inactivation of BIN2 leads to dephosphorylation and PM accumulation of FER. Thus, BR signaling enhances FER-mediated cell wall integrity surveillance while promoting cell expansion, whereas FER acts as a brake to maintain a safe cell elongation rate. Collectively, our study reveals a vital signaling circuit that coordinates hormone signaling with mechanical sensing to prevent cell rupture during hormone-induced cell expansion.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Yu-Chun Hsiao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Fang-Ling Jessica Yeh
- Department of Biochemistry and Molecular Biology and Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Milan Župunski
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hongliang Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Yalikunjiang Aizezi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrey Malkovskiy
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology and Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology and Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
2
|
Shrestha R, Reyes AV, Carey S, Karunadasa SS, Zhai W, Byun D, Lin WD, Li J, Alerte K, Cui H, Wang ZY, Xu SL. Next-Generation Mapping of the ACINUS-Mediated Alternative Splicing Machinery and Its Regulation by O-glycosylation in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.04.631329. [PMID: 40196518 PMCID: PMC11974692 DOI: 10.1101/2025.01.04.631329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Alternative splicing (AS) is a key mechanism of gene regulation, but the full repertoire of proteins involved and the regulatory mechanisms governing this process remain poorly understood. Using TurboID-based proximity labeling coupled with mass spectrometry (PL-MS), we comprehensively mapped the Arabidopsis AS machinery, focusing on the evolutionarily conserved splicing factor ACINUS, its paralog PININ, and the stable interactor SR45. We identified 298 high-confidence components, including both established and novel interactors, providing strong evidence that alternative splicing is coupled to transcription and that multiple RNA processing steps occur simultaneously in plants. Bioinformatic analysis reveals high redundancy, conserved mechanisms, and unique plant-specific features. Selected known and novel interactors were validated by AS readouts and phenotypic analysis, which also revealed a coordinated influence on splicing. Furthermore, a systematic evaluation of O-glycosylation double mutants revealed that SECRET AGENT (O-GlcNAc transferase) and SPINDLY (O-fucose transferase) modulate AS through both ACINUS-dependent and -independent pathways. Our results reveal the conserved as well as plant-specific AS regulatory network and highlight the global role of sugar modification in RNA processing.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shane Carey
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Wenxuan Zhai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Danbi Byun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| | - Jie Li
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Kathrine Alerte
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| |
Collapse
|
3
|
Liu D, You H, Zhang S, Pan J, Dong W, Li W. Cu-Catalyzed Synthesis of Symmetric Diarylamines from Organoboronic Acids Using NaNO 2 as the Amino Source. J Org Chem 2025; 90:4090-4098. [PMID: 40052793 DOI: 10.1021/acs.joc.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A copper-catalyzed novel synthesis of symmetric diarylamines was achieved from aryl boronic acids and NaNO2. This protocol employs aryl boronic acids as the commercially available arylation reagents and sodium nitrite (NaNO2) as the cheap, stable, and solid amino source. Under a simple ligand- and base-free copper catalytic system (CuCl as the sole catalyst), a wide range of symmetric diarylamines could be obtained in moderate to good yields. Notably, the use of Na15NO2 could produce 15N-labeled diarylamines, which would otherwise be difficult to prepare by the known methods.
Collapse
Affiliation(s)
- Daming Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Hui You
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuo Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Junyu Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wuheng Dong
- Medicine Center, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
4
|
Lin A, Ghosh A, Yellen S, Ball ZT, Kürti L. Oxidative Nitrogen Insertion into Silyl Enol Ether C═C Bonds. J Am Chem Soc 2024. [PMID: 39013155 DOI: 10.1021/jacs.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we demonstrate a fundamentally new reactivity of the silyl enol ether functionality utilizing an in situ-generated iodonitrene-like species. The present transformation inserts a nitrogen atom between the silyl enol ether olefinic carbons with the concomitant cleavage of the C═C bond. Overall, this facile transformation converts a C-nucleophilic silyl enol ether to the corresponding C-electrophilic N-acyl-N,O-acetal. This unprecedented access to α-amido alkylating agents enables modular derivatization with carbon and heteroatom nucleophiles and the unique late-stage editing of carbon frameworks. The reaction efficiency of this transformation is well correlated with enol ether nucleophilicity as described by the Mayr N scale. Applications presented herein include late-stage nitrogen insertion into carbon skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for 15N labeling of amides and lactams.
Collapse
Affiliation(s)
- Alex Lin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Arghya Ghosh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Simon Yellen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Zhu T, Wei C, Yu Y, Zhang Z, Zhu J, Liang Z, Song X, Fu W, Cui Y, Wang ZY, Li C. The BAS chromatin remodeler determines brassinosteroid-induced transcriptional activation and plant growth in Arabidopsis. Dev Cell 2024; 59:924-939.e6. [PMID: 38359831 PMCID: PMC11003849 DOI: 10.1016/j.devcel.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chuangqi Wei
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-food Canada, London, ON N5V 4T3, Canada
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Shrestha R, Karunadasa S, Grismer TS, Reyes AV, Xu SL. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis. Mol Cell Proteomics 2024; 23:100732. [PMID: 38336175 PMCID: PMC10979276 DOI: 10.1016/j.mcpro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA.
| |
Collapse
|
7
|
Grismer TS, Karundasa SS, Shrestha R, Byun D, Ni W, Reyes AV, Xu SL. Workflow enhancement of TurboID-mediated proximity labeling for SPY signaling network mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580820. [PMID: 38405906 PMCID: PMC10888891 DOI: 10.1101/2024.02.17.580820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
TurboID-based proximity labeling coupled to mass spectrometry (PL-MS) has emerged as a powerful tool for mapping protein-protein interactions in both plant and animal systems. Despite advances in sensitivity, PL-MS studies can still suffer from false negatives, especially when dealing with low abundance bait proteins and their transient interactors. Protein-level enrichment for biotinylated proteins is well developed and popular, but direct detection of biotinylated proteins by peptide-level enrichment and the difference in results between direct and indirect detection remain underexplored. To address this gap, we compared and improved enrichment and data analysis methods using TurboID fused to SPY, a low-abundance O-fucose transferase, using an AAL-enriched SPY target library for cross-referencing. Our results showed that MyOne and M280 streptavidin beads significantly outperformed antibody beads for peptide-level enrichment, with M280 performing best. In addition, while a biotin concentration ≤ 50 μM is recommended for protein-level enrichment in plants, higher biotin concentrations can be used for peptide-level enrichment, allowing us to improve detection and data quality. FragPipe's MSFragger protein identification and quantification software outperformed Maxquant and Protein Prospector for SPY interactome enrichment due to its superior detection of biotinylated peptides. Our improved washing protocols for protein-level enrichment mitigated bead collapse issues, improving data quality, and reducing experimental time. We found that the two enrichment methods provided complementary results and identified a total of 160 SPY-TurboID-enriched interactors, including 60 previously identified in the AAL-enriched SPY target list and 100 additional novel interactors. SILIA quantitative proteomics comparing WT and spy-4 mutants showed that SPY affects the protein levels of some of the identified interactors, such as nucleoporin proteins. We expect that our improvement will extend beyond TurboID to benefit other PL systems and hold promise for broader applications in biological research.
Collapse
Affiliation(s)
- TaraBryn S Grismer
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu S Karundasa
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Danbi Byun
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Weimin Ni
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
8
|
Zhang Z, Zhang H, Gonzalez E, Grismer T, Xu SL, Wang ZY. UPL3 Promotes BZR1 Degradation, Growth Arrest, and Seedling Survival under Starvation Stress in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562997. [PMID: 37904964 PMCID: PMC10614919 DOI: 10.1101/2023.10.18.562997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
BRASSINAZONE RESISTANT 1 (BZR1) is a key transcription factor of the brassinosteroid signaling pathway but also a signaling hub that integrates diverse signals that modulate plant growth. Previous studies have shown that starvation causes BZR1 degradation, but the underlying mechanisms are not understood. Here we performed quantitative proteomic analysis of BZR1 interactome under starvation conditions and identified two BZR1-interacting ubiquitin ligases, BAF1 and UPL3. Compared to the wild type, the upl3 mutants show long hypocotyl and increased BZR1 levels when grown under sugar starvation conditions but not when grown on sugar-containing media, indicating a role of UPL3 in BZR1 degradation specifically under starvation conditions. The upl3 mutants showed a reduced survival rate after starvation treatment, supporting the importance of UPL3-mediated BZR1 degradation and growth arrest for starvation survival. Treatments with inhibitors of TARGET of RAPAMYCIN (TOR) and autophagy altered BZR1 level in the wild type but were less effective in upl3 , suggesting that UPL3 mediates the TOR-regulated and autophagy-dependent degradation of BZR1. Further, the UPL3 protein level is increased posttranscriptionally by starvation but decreased by sugar treatment. Our study identifies UPL3 as a key component that mediates sugar regulation of hormone signaling pathways, important for optimal growth and survival in plants. IN A NUTSHELL Background: The coordination between signaling pathways that monitor the levels of photosynthate and growth hormones is crucial for optimizing growth and survival, but the underlying mechanisms are not fully understood. When the sugar level is low, the BZR1 transcription factor of the brassinosteroid (BR) signaling pathway is degraded, and hence growth is attenuated to prevent starvation and enhance survival. When sugar is sufficient, sugar signaling inhibits BZR1 degradation and enables BR promotion of plant growth. The key component that mediates starvation-induced BZR1 degradation remains unknown.Question: What proteins interact with BZR1 and mediate its degradation under sugar starvation?Finding: We performed immunoprecipitation mass spectrometry analysis of BZR1 in starvation-treated Arabidopsis and identified many BZR1-interacting proteins, including two E3 ligases UPL3 and BAF1. Genetic analysis showed that UPL3 plays a specific and prominent role in promoting autophagy-dependent BZR1 degradation and plant survival under sugar-starvation conditions.Next step: How sugar-TOR signaling regulates UPL3 level remains to be studied in the future.
Collapse
|
9
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Bi Y, Shrestha R, Zhang Z, Hsu CC, Reyes AV, Karunadasa S, Baker PR, Maynard JC, Liu Y, Hakimi A, Lopez-Ferrer D, Hassan T, Chalkley RJ, Xu SL, Wang ZY. SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis. THE PLANT CELL 2023; 35:1318-1333. [PMID: 36739885 PMCID: PMC10118272 DOI: 10.1093/plcell/koad023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Peter R Baker
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Yang Liu
- ThermoFisher Scientific, San Jose, California 95134, USA
| | | | | | - Tahmid Hassan
- ThermoFisher Scientific, Somerset, New Jersey 08873, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
11
|
Cao Q, Han M, Zhang Z, Yu C, Xu L, Shi T, Zheng P, Sun J. Novel 15N Metabolic Labeling-Based Large-Scale Absolute Quantitative Proteomics Method for Corynebacterium glutamicum. Anal Chem 2023; 95:4829-4833. [PMID: 36897266 DOI: 10.1021/acs.analchem.2c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
With fast growth, synthetic biology powers us with the capability to produce high commercial value products in an efficient resource/energy-consuming manner. Comprehensive knowledge of the protein regulatory network of a bacterial host chassis, e.g., the actual amount of the given proteins, is the key to building cell factories for certain target hyperproduction. Many talent methods have been introduced for absolute quantitative proteomics. However, for most cases, a set of reference peptides with isotopic labeling (e.g., SIL, AQUA, QconCAT) or a set of reference proteins (e.g., commercial UPS2 kit) needs to be prepared. The higher cost hinders these methods for large sample research. In this work, we proposed a novel metabolic labeling-based absolute quantification approach (termed nMAQ). The reference Corynebacterium glutamicum strain is metabolically labeled with 15N, and a set of endogenous anchor proteins of the reference proteome is quantified by chemically synthesized light (14N) peptides. The prequantified reference proteome was then utilized as an internal standard (IS) and spiked into the target (14N) samples. SWATH-MS analysis is performed to obtain the absolute expression levels of the proteins from the target cells. The cost for nMAQ is estimated to be less than 10 dollars per sample. We have benchmarked the quantitative performance of the novel method. We believe this method will help with the deep understanding of the intrinsic regulatory mechanism of C. glutamicum during bioengineering and will promote the process of building cell factories for synthetic biology.
Collapse
Affiliation(s)
- Qichen Cao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Manman Han
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zuoqing Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Yu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Lida Xu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
12
|
McKown KH, Anleu Gil MX, Mair A, Xu SL, Raissig MT, Bergmann DC. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. THE PLANT CELL 2023; 35:756-775. [PMID: 36440974 PMCID: PMC9940870 DOI: 10.1093/plcell/koac341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 05/07/2023]
Abstract
Stomata, cellular valves found on the surfaces of aerial plant tissues, present a paradigm for studying cell fate and patterning in plants. A highly conserved core set of related basic helix-loop-helix (bHLH) transcription factors regulates stomatal development across diverse species. We characterized BdFAMA in the temperate grass Brachypodium distachyon and found this late-acting transcription factor was necessary and sufficient for specifying stomatal guard cell fate, and unexpectedly, could also induce the recruitment of subsidiary cells in the absence of its paralogue, BdMUTE. The overlap in function is paralleled by an overlap in expression pattern and by unique regulatory relationships between BdMUTE and BdFAMA. To better appreciate the relationships among the Brachypodium stomatal bHLHs, we used in vivo proteomics in developing leaves and found evidence for multiple shared interaction partners. We reexamined the roles of these genes in Arabidopsis thaliana by testing genetic sufficiency within and across species, and found that while BdFAMA and AtFAMA can rescue stomatal production in Arabidopsis fama and mute mutants, only AtFAMA can specify Brassica-specific myrosin idioblasts. Taken together, our findings refine the current models of stomatal bHLH function and regulatory feedback among paralogues within grasses as well as across the monocot/dicot divide.
Collapse
Affiliation(s)
- Katelyn H McKown
- Department of Genetics, Stanford School of Medicine, Stanford, California 94305, USA
| | - M Ximena Anleu Gil
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| | - Andrea Mair
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, California 94305, USA
| | - Michael T Raissig
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| |
Collapse
|
13
|
Reyes AV, Shrestha R, Baker PR, Chalkley RJ, Xu SL. Application of Parallel Reaction Monitoring in 15N Labeled Samples for Quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:832585. [PMID: 35592564 PMCID: PMC9111532 DOI: 10.3389/fpls.2022.832585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Accurate relative quantification is critical in proteomic studies. The incorporation of stable isotope 15N to plant-expressed proteins in vivo is a powerful tool for accurate quantification with a major advantage of reducing preparative and analytical variabilities. However, 15N labeling quantification has several challenges. Less identifications are often observed in the heavy-labeled samples because of incomplete labeling, resulting in missing values in reciprocal labeling experiments. Inaccurate quantification can happen when there is contamination from co-eluting peptides or chemical noise in the MS1 survey scan. These drawbacks in quantification can be more pronounced in less abundant but biologically interesting proteins, which often have very few identified peptides. Here, we demonstrate the application of parallel reaction monitoring (PRM) to 15N labeled samples on a high resolution, high mass accuracy Orbitrap mass spectrometer to achieve reliable quantification even of low abundance proteins in samples.
Collapse
Affiliation(s)
- Andres V. Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Peter R. Baker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|