1
|
Chevenier A, Fanuel M, Sokolova E, Mico Latorre D, Jouanneau D, Jeudy A, Préchoux A, Zühlke MK, Bartel J, Becher D, Czjzek M, Ropartz D, Michel G, Ficko-Blean E. Structure, function and catalytic mechanism of the carrageenan-sulfatases from the marine bacterium Zobellia galactanivorans Dsij T. Carbohydr Polym 2025; 358:123487. [PMID: 40383559 DOI: 10.1016/j.carbpol.2025.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 05/20/2025]
Abstract
Carrageenans are highly diverse sulfated galactans found in red seaweeds. They play various physiological roles within macroalgae, but also serve as carbon sources for heterotrophic marine bacteria living at their surface. Carrageenan sulfatases catalyze the removal of sulfate esters from the glycans to expose the saccharide chain for further enzymatic processing. In the marine flavobacterium Zobellia galactanivorans, three carrageenan sulfatase genes are localized within a carrageenan utilization locus, belonging to three distinct SulfAtlas S1 (formylglycine-dependent sulfatases) subfamilies (S1_19, ZgCgsA; S1_7, ZgCgsB1; and S1_17, ZgCgsC). In this study we combined several techniques to characterize the detailed desulfurylation steps in the catabolic pathway of carrageenan in this model marine bacterium. High resolution UHPLC-MS/MS sequencing of the reaction species provides precise chemical localization of the enzymatic activities for the three carrageenan sulfatases on carrageenan polysaccharides and oligosaccharides. High resolution structures of the S1_19 endo-/exo-lytic carrageenan sulfatase (ZgCgsA) in complex with oligocarrageenan products show substrate plasticity which involve enzyme and glycan conformational rearrangements. A sulfo-enzyme covalent-intermediate sheds light on the catalytic mechanism and highlights the unique chemistry of formylglycine, an essential post-translationally modified catalytic residue in the active site of S1 family sulfatases.
Collapse
Affiliation(s)
- Antonin Chevenier
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Mathieu Fanuel
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, PROBE research infrastructure, BIBS facility, F-44316 Nantes, France
| | - Ekaterina Sokolova
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Diego Mico Latorre
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Diane Jouanneau
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Alexandra Jeudy
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Aurélie Préchoux
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Marie-Katherin Zühlke
- Institute of Marine Biotechnology, 17487 Greifswald, Germany; Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - Jürgen Bartel
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, PROBE research infrastructure, BIBS facility, F-44316 Nantes, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France.
| | - Elizabeth Ficko-Blean
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France.
| |
Collapse
|
2
|
Li S, Guo Y, Jiang H, Zhang H, Li J, Chen Y, Li J, Mao X, Wang M. Mining Arylsulfatase from Genome-Scale Metabolic Pathways of Pseudoalteromonas sp. SR43-6 and Its Agar-Based Desulfurization Applications. ACS OMEGA 2025; 10:18005-18016. [PMID: 40352500 PMCID: PMC12060045 DOI: 10.1021/acsomega.5c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Arylsulfatase catalyzes the cleavage of sulfate ester bonds and plays a role in agar desulfation, thereby enhancing agar gel strength and quality. While studying the desulfurization pathway in Pseudoalteromonassp. SR43-6, a sequence encoding a potential arylsulfatase-Pseudoalteromonas Ars (Ps-Ars)-was found. The enzyme, with p-nitrophenyl sulfate as a substrate, exhibited optimal activity at 35 °C and pH 8.0. Its relative activity (206 U/mg) exceeded that of the recently identified arylsulfatases. Four hundred units of the enzyme removed 86.4% of sulfate groups from Gelidium amansii agar in 4 h, whereas 800 U of the enzyme removed 71.3% of sulfate groups from Gracilaria lemaneiformis agar in 8 h. After enzymatic treatment, G. amansii agar gel strength was enhanced by 32%, and a similar improvement was observed in G. lemaneiformis agar gel strength. Enzymatic agar desulfurization offers mild, quality-retaining, and environmentally friendly advantages, augmenting industrial application prospects.
Collapse
Affiliation(s)
- Songzhi Li
- College
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Yang Guo
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Hong Jiang
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Huan Zhang
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Jiayu Li
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
| | - Yanli Chen
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Jie Li
- College
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xiangzhao Mao
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Minxiao Wang
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| |
Collapse
|
3
|
Figueiredo G, Osório H, Mendes MV, Mendo S. A review on the expanding biotechnological frontier of Pedobacter. Biotechnol Adv 2025; 82:108588. [PMID: 40294724 DOI: 10.1016/j.biotechadv.2025.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The genus Pedobacter consists of Gram-negative bacteria with a broad geographic distribution, isolated from diverse habitats, including water, soil, plants, wood, rocks and animals. However, characterization efforts have been limited to a small number of species. Likewise, in the context of natural products (NP), only a small fraction of Pedobacter -derived NPs have been characterized so far. In contrast, in silico analysis of the increasing number of available genomes in the databases, suggests a wealth of yet to be discovered compounds. Notable biotechnological applications described so far include the production of heparinases and chondroitinases for therapeutic purposes, phytases and galactosidases as aquaculture feed supplements, alginate lyases for biofuel production, and secondary metabolites such as pedopeptins and isopedopeptins with antimicrobial properties. Further research integrating synthetic biology approaches, holds great promise for unlocking the hidden potential of members of this genus, thus expanding its industrial applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the, University of Porto, 4200-135 Porto, Portugal
| | - Marta V Mendes
- CIIMAR/CIMAR LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, 4450-208 Porto, Portugal
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Zhang YQ, Yuan Q, Liu JQ, Liang XC, Wang JP, Jiang WX, Li PY. Genomic analysis of Isoptericola halotolerans SM2308 reveals its potential involved in fucoidan degradation. Mar Genomics 2025; 79:101165. [PMID: 39823756 DOI: 10.1016/j.margen.2025.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Marine bacteria play important roles in the degradation and recycling of algal polysaccharides. However, the marine bacteria involved in fucoidan degradation and their degradation pathways remain poorly understood. Here, we report the complete genome sequence of Isoptericola halotolerans SM2308, isolated from a brown algal sample collected from an intertidal zone of the Yellow Sea in China. The genome of strain SM2308 consists of a single circular chromosome of 4,011,455 bp with a high GC content of 72.70 %. Strain SM2308 exhibited rapid growth on fucoidan as the sole carbon source, indicating its capacity to degrade fucoidan. Gene annotation and metabolic pathway analyses showed that strain SM2308 possesses a complete pathway for utilizing fucoidan, including the extracellular breakdown of polymeric fucoidan into smaller fucooligosaccharides/fucose by fucoidanases, the transmembrane transport of fucooligosaccharides/fucose into the cytoplasm by an ABC transporter, and the intracellular fucose catabolism via a non-phosphorylative pathway. This represents the first genome of an actinobacterium from the order Micrococcales with fucoidan-degrading ability. The genome of Isoptericola halotolerans SM2308 provides insights into the role of actinobacteria in the biogeochemical cycling of fucoidan in marine ecosystems.
Collapse
Affiliation(s)
- Yu-Qi Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Qi Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ji-Qing Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Xiao-Chen Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing-Ping Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2025; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
6
|
Bai J, Pan B, Luo W, Yang Z, Zhu L, Cheng Z, Zhao Y, Zhang J, Zhu Y, Xiao X. Role of sulfatase LPMS from Lactiplantibacillus plantarum dy-1 in releasing bound phenolic acids of barley bran dietary fiber. J Food Sci 2025; 90:e70062. [PMID: 39929709 DOI: 10.1111/1750-3841.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 05/08/2025]
Abstract
Latic acid fermentation is an effective way to release the bound phenolic acids from grains dietary fiber to improve the biological effects in vivo. Previous analysis of whole genome sequencing and comparative proteomics has revealed that a sulfatase named LPMS in Lactiplantibacillus plantarum dy-1 (L. plantarum dy-1) was the potential key enzyme in promoting the release of bound phenol from barley bran dietary fiber. In this present study, we utilized gene editing technology to modify dy-1 to verify the key role of LPMS in releasing the bond phenolic acids during dy-1 fermentation. Results showed that lpms knockout and overexpression strains (dy-1-∆LPMS and dy-1-OELPMS) were successfully constructed, evidenced by the lpms gene level and sequencing. lpms editing delayed the exponential period of dy-1 growth but had little effect on the stable period. Fermented barley bran dietary fiber (FBDF) by dy-1, dy-1-∆LPMS, and dy-1-OELPMS demonstrated lower molecular weight, rougher surface morphology, looser microstructure, and decreased crystallinity, among which dy-1-∆LPMS showed the least influence. Confocal laser scanning microscope results illustrated that the colocalization between bound phenolic acids and dietary fibers was more apparent under dy-1-ΔLPMS fermentation. Furthermore, knockout of lpms significantly declined the release of bond phenolic acids, especially for the hydroxybenzoic acid derivatives, resulting in the lower antioxidant capacities (p < 0.05). In all, we confirmed that the sulfatase LPMS in L. plantarum dy-1 played great part in releasing the bond phenolic acids from barley bran dietary fiber, therefore improving the bioactivity of released phenolic acids. PRACTICAL APPLICATION: This study confirmed the sulfatase LPMS in L. plantarum dy-1 played key role in releasing the bond phenolic acids during fermentation of barley bran dietary fiber. In the future, heterologously expressed LPMSs have great potential applications in the brewing and feed industries, among others, which could increase the nutritional and commercial value of byproducts.
Collapse
Affiliation(s)
- Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Beibei Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wei Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhangchen Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
7
|
Rhein-Knudsen N, Reyes-Weiss DS, Klau LJ, Jeudy A, Roret T, Stokke R, Eijsink VGH, Aachmann FL, Czjzek M, Horn SJ. Identification and Characterization of a New Thermophilic κ-Carrageenan Sulfatase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2044-2055. [PMID: 39797788 PMCID: PMC11760155 DOI: 10.1021/acs.jafc.4c09751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms. Characterizing these enzymes is crucial for understanding carrageenan utilization and may eventually enable the development of targeted processes to modify carrageenans for industrial applications. In our study, we characterized a κ-carrageenan sulfatase, AMOR_S1_16A, belonging to the sulfatase S1_16 subfamily, which selectively desulfates the nonreducing end galactoses of κ-carrageenan oligomers in an exomode. Notably, AMOR_S1_16A represents the first κ-carrageenan sulfatase within the S1_16 subfamily and exhibits a novel enzymatic activity. This study provides further understanding of the substrate specificity and characteristics of the S1_16 subfamily. Moreover, this research highlights that many processes and enzymes remain to be discovered to fully understand carrageenan utilization pathways and to develop enzymatic processes for carrageenan modification and processing.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Diego S. Reyes-Weiss
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Leesa J. Klau
- Department
of Biotechnology and Food Science, NTNU
Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7419 Trondheim, Norway
- Department
of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway
| | - Alexandra Jeudy
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Thomas Roret
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Runar Stokke
- Department
of Biological Sciences and Centre for Deep Sea Research, University of Bergen, 5020 Bergen, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Finn L. Aachmann
- Department
of Biotechnology and Food Science, NTNU
Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7419 Trondheim, Norway
| | - Mirjam Czjzek
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Svein Jarle Horn
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| |
Collapse
|
8
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
9
|
Macdonald JFH, Pérez-García P, Schneider YKH, Blümke P, Indenbirken D, Andersen JH, Krohn I, Streit WR. Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation. Sci Rep 2024; 14:10237. [PMID: 38702505 PMCID: PMC11068906 DOI: 10.1038/s41598-024-60978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Pablo Pérez-García
- Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Yannik K-H Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Patrick Blümke
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Jeanette H Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| |
Collapse
|
10
|
Möller L, Vainshtein Y, Meyer B, Neidhardt J, Eren AM, Sohn K, Rabus R. Rich microbial and depolymerising diversity in Antarctic krill gut. Microbiol Spectr 2024; 12:e0403523. [PMID: 38466097 PMCID: PMC10986584 DOI: 10.1128/spectrum.04035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.
Collapse
Affiliation(s)
- Lars Möller
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Yevhen Vainshtein
- In Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg (HIFMB), Oldenburg, Germany
- Biosciences, Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - John Neidhardt
- Department of Human Medicine, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - A. Murat Eren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg (HIFMB), Oldenburg, Germany
- HIFMB-MPG Bridging Group for Marine Genomics, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Kai Sohn
- In Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Fuchs A, Romeis D, Hupfeld E, Sieber V. Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5816-5827. [PMID: 38442258 PMCID: PMC10958521 DOI: 10.1021/acs.jafc.3c08613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applications. However, the limitation of available sulfatases to break down the complex sulfation patterns of carrageenans poses a significant limitation for the sustainable production of valuable bioproducts from red algae. In this study, we screened several carrageenolytic polysaccharide utilization loci for novel sulfatase activities to assist the efficient conversion of a variety of sulfated galactans into the target product 3,6-anhydro-D-galactose. Inspired by the carrageenolytic pathways in marine heterotrophic bacteria, we systematically combined these novel sulfatases with other carrageenolytic enzymes, facilitating the development of the first enzymatic one-pot biotransformation of ι- and κ-carrageenan to 3,6-anhdyro-D-galactose. We further showed the applicability of this enzymatic bioconversion to a broad series of hybrid carrageenans, rendering this process a promising and sustainable approach for the production of value-added biomolecules from red-algal feedstocks.
Collapse
Affiliation(s)
- Alexander Fuchs
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Dennis Romeis
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Enrico Hupfeld
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
- SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Catalytic
Research Center, Ernst-Otto-Fischer-Straße1, 85748 Garching, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia
| |
Collapse
|
12
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
13
|
Facimoto CT, Clements KD, White WL, Handley KM. Bacteroidia and Clostridia are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish Kyphosus sydneyanus. ISME COMMUNICATIONS 2024; 4:ycae102. [PMID: 39165393 PMCID: PMC11333855 DOI: 10.1093/ismeco/ycae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
The gut microbiota of the marine herbivorous fish Kyphosus sydneyanus are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by Bacteroidia and Clostridia. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer Gammaproteobacteria and Verrucomicrobiae. Results indicate that Bacteroidia utilize substrates in both brown and red algae, whereas other taxa, namely, Clostridia, Bacilli, and Verrucomicrobiae, utilize mainly brown algae. Bacteroidia had the highest CAZyme gene densities overall, and Alistipes were especially enriched in CAZyme gene clusters (n = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the K. sydneyanus gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that Bacteroidia encompass specialized macroalgae degraders.
Collapse
Affiliation(s)
- Cesar T Facimoto
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - W Lindsey White
- Department of Environmental Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
14
|
Silchenko AS, Taran IV, Usoltseva RV, Zvyagintsev NV, Zueva AO, Rubtsov NK, Lembikova DE, Nedashkovskaya OI, Kusaykin MI, Isaeva MP, Ermakova SP. The Discovery of the Fucoidan-Active Endo-1→4-α-L-Fucanase of the GH168 Family, Which Produces Fucoidan Derivatives with Regular Sulfation and Anticoagulant Activity. Int J Mol Sci 2023; 25:218. [PMID: 38203394 PMCID: PMC10778895 DOI: 10.3390/ijms25010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.
Collapse
Affiliation(s)
- Artem S. Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Ilya V. Taran
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Roza V. Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikolay V. Zvyagintsev
- Laboratory of Physical and Chemical Research Methods, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia
| | - Anastasiya O. Zueva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikita K. Rubtsov
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Dana E. Lembikova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Olga I. Nedashkovskaya
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Mikhail I. Kusaykin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Marina P. Isaeva
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| |
Collapse
|
15
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Zueva AO, Silchenko AS, Rasin AB, Malyarenko OS, Kusaykin MI, Kalinovsky AI, Ermakova SP. Production of high- and low-molecular weight fucoidan fragments with defined sulfation patterns and heightened in vitro anticancer activity against TNBC cells using novel endo-fucanases of the GH107 family. Carbohydr Polym 2023; 318:121128. [PMID: 37479440 DOI: 10.1016/j.carbpol.2023.121128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
Fucoidans are complex fucose-containing sulfated polysaccharides with pronounced anticancer effects. Their structure-anticancer activity relationships are difficult to determine due to fucoidans' complex, often irregularities-including structures. Fucoidan-active enzymes can be used for this propose. We have investigated two new recombinant endo-fucanases FWf3 and FWf4 from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T that belong to the 107 family of glycoside hydrolases (GH). Both enzymes cleaved α-(1→4)-glycosidic bonds but in fucoidan fragments with different sulfation patterns. FWf3 is the first characterized endo-fucanase that cleaves glycosidic bonds between 2O- and 2,4diO-sulfated L-fucose residues. The obtained endo-fucanases were used to produce low- and high-molecular weight fucoidan derivatives with different sulfate group locations. Low- and high-molecular weight fucoidan derivatives rich with 2,4diO-sulfation were shown to inhibit MDA-MB-231 cell colony formation more efficiently than the native fucoidan and the derivatives sulfated otherwise. Such derivatives effectively suppressed the mitochondrial membrane potential of MDA-MB-231 cells and reduced the expression of the glucose transporter 1 (GLUT1). Co-treatment of MDA-MB-231 cells with the fucoidan derivatives and oligomycin (an OXPHOS inhibitor) resulted in a synergistic anticancer effect. The data obtained demonstrate, that fucoidan and its 2,4diO-sulfated derivatives can be an effective adjunct in TNBC therapy targeting cell metabolism.
Collapse
Affiliation(s)
- Anastasiya O Zueva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation.
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation.
| |
Collapse
|
17
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rhodopirellula aestuarii sp. nov., a novel member of the genus Rhodopirellula isolated from brackish sediments collected in the Tagus River estuary, Portugal. Syst Appl Microbiol 2022; 45:126360. [PMID: 36166947 DOI: 10.1016/j.syapm.2022.126360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species. 16S rRNA gene accession number: GenBank = OK001858. Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Dominika Klimek
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg; The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Luxemburg
| | - Magdalena Calusinska
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
18
|
Mashima R, Nakanishi M. Mammalian Sulfatases: Biochemistry, Disease Manifestation, and Therapy. Int J Mol Sci 2022; 23:ijms23158153. [PMID: 35897729 PMCID: PMC9330403 DOI: 10.3390/ijms23158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfatases are enzymes that catalyze the removal of sulfate from biological substances, an essential process for the homeostasis of the body. They are commonly activated by the unusual amino acid formylglycine, which is formed from cysteine at the catalytic center, mediated by a formylglycine-generating enzyme as a post-translational modification. Sulfatases are expressed in various cellular compartments such as the lysosome, the endoplasmic reticulum, and the Golgi apparatus. The substrates of mammalian sulfatases are sulfolipids, glycosaminoglycans, and steroid hormones. These enzymes maintain neuronal function in both the central and the peripheral nervous system, chondrogenesis and cartilage in the connective tissue, detoxification from xenobiotics and pharmacological compounds in the liver, steroid hormone inactivation in the placenta, and the proper regulation of skin humidification. Human sulfatases comprise 17 genes, 10 of which are involved in congenital disorders, including lysosomal storage disorders, while the function of the remaining seven is still unclear. As for the genes responsible for pathogenesis, therapeutic strategies have been developed. Enzyme replacement therapy with recombinant enzyme agents and gene therapy with therapeutic transgenes delivered by viral vectors are administered to patients. In this review, the biochemical substrates, disease manifestation, and therapy for sulfatases are summarized.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Correspondence: ; Fax: +81-3-3417-2238
| | | |
Collapse
|