1
|
Verma KK, Song XP, Liang Q, Huang HR, Bhatt R, Xu L, Chen GL, Li YR. Unlocking the role of silicon against biotic stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1430804. [PMID: 39726419 PMCID: PMC11670751 DOI: 10.3389/fpls.2024.1430804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The requirement for agricultural crops continues to enhance with the continuous growth of the human population globally. Plant pathogenic diseases outbreaks are enhancing and threatening food security and safety for the vulnerable in different regions worldwide. Silicon (Si) is considered a non-essential element for plant growth. It regulates the biological functions, plant development and productivity, and balance the defense mechanism in response to fungal, bacterial and pest attacks. The optimum crop yield can be achieved by applying Si in agricultural systems through different methods to replace or minimize the use of synthetic fertilizers. This approach can be effective on crop production during limited resources, extreme climates, pests and diseases, and environmental pollution. Silicon can be applied as foliar spray, priming of seeds, soil water irrigation, soil amendment and soilless medium (hydroponic) to enhance plant performance and stress tolerance capacity during stress conditions. This article summarized the effective roles of Si and the ability to perform in agroecosystems for better crop production, food security and safety for sustainable agriculture in the future.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Hai-Rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Rajan Bhatt
- Punjab Agricultural University (PAU)-Krishi Vigyan Kendra Amritsar, Punjab, India
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Gan-Lin Chen
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi, China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| |
Collapse
|
2
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Idoudi M, Slatni T, Laifa I, Rhimi N, Rabhi M, Hernández-Apaolaza L, Zorrig W, Abdelly C. Silicon (Si) mitigates the negative effects of iron deficiency in common bean (Phaseolus vulgaris L.) by improving photosystem activities and nutritional status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108236. [PMID: 38064901 DOI: 10.1016/j.plaphy.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
Silicon (Si) is the second most abundant element in the Earth's crust after oxygen. Its beneficial impact on crop development and yield, particularly under stressful conditions such as iron (Fe) deficiency, has been well documented. Fe deficiency is a critical constraint that limits crop production globally. The objective of this study was to investigate the effects of silicon (Na2SiO3) on common bean (Phaseolus vulgaris L. 'Coco Rose' variety) under iron-deficient conditions. The common bean plants were subjected to six treatments, which included three sufficient iron treatments (50 μM Fe) each paired with three varying silicon concentrations (0, 0.25, and 0.5 mM Si), and three iron-deficient treatments (0.1 μM Fe) each associated with the same silicon concentrations (0, 0.25, and 0.5 mM Si). The results indicate that iron deficiency had a negative impact on almost all the measured parameters. However, under silicon treatments, especially with 0.5 mM Si, the depressive effects of iron deficiency were significantly mitigated. The addition of 0.5 mM Si alleviated leaf chlorosis and improved biomass production, nutritional status, photosynthetic pigment content, photosynthetic gas exchange, and photosystem (PSI and PSII) activities. Interestingly, a greater beneficial effect of silicon was observed on PSII compared to PSI. This was accompanied by a significant augmentation in leaf iron concentration by 42%. Therefore, by enhancing the photosystem activities and nutritional status, among other mechanisms, silicon is capable of mitigating the adverse effects of iron-deficient conditions, making it a successful and effective solution to cope with this nutritional stress.
Collapse
Affiliation(s)
- Mariem Idoudi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Tarek Slatni
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Israa Laifa
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Nassira Rhimi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Mokded Rabhi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Walid Zorrig
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia.
| | - Chedly Abdelly
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
4
|
Zhang E, Zhu X, Wang W, Sun Y, Tian X, Chen Z, Mou X, Zhang Y, Wei Y, Fang Z, Ravenscroft N, O’Connor D, Chang X, Yan M. Metabolomics reveals the response of hydroprimed maize to mitigate the impact of soil salinization. FRONTIERS IN PLANT SCIENCE 2023; 14:1109460. [PMID: 37351217 PMCID: PMC10282767 DOI: 10.3389/fpls.2023.1109460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/09/2023] [Indexed: 06/24/2023]
Abstract
Soil salinization is a major environmental stressor hindering global crop production. Hydropriming has emerged as a promising approach to reduce salt stress and enhance crop yields on salinized land. However, a better mechanisitic understanding is required to improve salt stress tolerance. We used a biochemical and metabolomics approach to study the effect of salt stress of hydroprimed maize to identify the types and variation of differentially accumulated metabolites. Here we show that hydropriming significantly increased catalase (CAT) activity, soluble sugar and proline content, decreased superoxide dismutase (SOD) activity and peroxide (H2O2) content. Conversely, hydropriming had no significant effect on POD activity, soluble protein and MDA content under salt stress. The Metabolite analysis indicated that salt stress significantly increased the content of 1278 metabolites and decreased the content of 1044 metabolites. Ethisterone (progesterone) was the most important metabolite produced in the roots of unprimed samples in response to salt s tress. Pathway enrichment analysis indicated that flavone and flavonol biosynthesis, which relate to scavenging reactive oxygen species (ROS), was the most significant metabolic pathway related to salt stress. Hydropriming significantly increased the content of 873 metabolites and significantly decreased the content of 1313 metabolites. 5-Methyltetrahydrofolate, a methyl donor for methionine, was the most important metabolite produced in the roots of hydroprimed samples in response to salt stress. Plant growth regulator, such as melatonin, gibberellin A8, estrone, abscisic acid and brassinolide involved in both treatment. Our results not only verify the roles of key metabolites in resisting salt stress, but also further evidence that flavone and flavonol biosynthesis and plant growth regulator relate to salt tolerance.
Collapse
Affiliation(s)
- Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xingjian Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wenli Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ziyi Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinshang Mou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yanli Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yueheng Wei
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zhixuan Fang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Neil Ravenscroft
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
- International Agriculture University, Tashkent, Uzbekistan
| | - David O’Connor
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
| | - Xianmin Chang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
| | - Min Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Ramírez E, Chaâbene Z, Hernández-Apaolaza L, Rekik M, Elleuch A, de la Fuente V. Seed priming to optimize germination in Arthrocnemum Moq. BMC PLANT BIOLOGY 2022; 22:527. [PMID: 36376813 PMCID: PMC9661790 DOI: 10.1186/s12870-022-03893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Seed germination and seedling growth constitute the first stage of a plant's life cycle for crop establishment. Arthrocnemum Moq. is a halophyte of the subfamily Salicornioideae (Amaranthaceae), which could be recognized in the foreseeable future as an emerging candidate in applied biosaline agricultural programs, mainly due to the large biomass it represents in coastal and inland saltmarshes, in addition to its interesting nutritional and pharmacological properties. However, to ensure their subsequent use as a crop, it is necessary to optimize their germination through appropriate seed priming treatments. The main goal of this work was to seek the optimization of Arthrocnemum germination process using different pretreatments: exposure to sodium chloride (100 to 1200 mM) in the dark and its subsequent transferred to distilled water separately and together with the combination of pH (5, 7, 9), salinity (0, 100, 200 mM NaCl), and iron conditions (0, 200, 400 µM FeSO4). The experiments were tested on six samples of two different species: A. meridionale (from Tunisia) and A. macrostachyum (from Spain). RESULTS Salinity priming of seeds for 15 days in darkness improved germination percentages by almost 25% at 600 mM NaCl, in both Tunisian and Spanish species. However, keeping seeds at different salt concentrations for 30 days produced higher improvement percentages at lower concentrations in A. meridionale (100-200 mM NaCl), while in A. macrostachyum the highest improvement percentages were obtained at 600 mM NaCl (percentage improvement of 47%). When the dark time period is reduced to 5 days at higher salt concentrations, the greater germination percentages were reached in all the samples at the concentration of 800 mM NaCl, increasing the improvement of germination between 17 and 50%. Finally, the conditions of pH = 7, pretreatment in darkness at 800 mM NaCl and 400 µM or iron, turned out to be an effective medium for seed germination. CONCLUSIONS Therefore, before using Arthrocnemum seeds in applied biotechnological programs, a seed priming treatment based on prior exposure to high salt concentrations (600-1000 mM NaCl) is recommended in order to maximize germination percentages.
Collapse
Affiliation(s)
- Esteban Ramírez
- Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Zayneb Chaâbene
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Mariem Rekik
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Vicenta de la Fuente
- Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|