1
|
Ke D, Zhang Y, Teng Y, Zhao X. Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate ( Punica granatum) Varieties. Foods 2025; 14:1755. [PMID: 40428534 PMCID: PMC12111560 DOI: 10.3390/foods14101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Soluble sugars and organic acids constitute the primary flavor determinants in fruits and elucidating their metabolic mechanisms provides crucial theoretical foundations for fruit breeding practices and food industry development. Through integrated physiological and transcriptomic analysis of pomegranate varieties 'Sharp Velvet' with high acid content and 'Azadi' with low acid content, this study demonstrated that the differences in flavor between the two varieties were mainly caused by differences in citric acid content rather than in soluble sugar content. Transcriptome profiling identified 11 candidate genes involved in sugar and acid metabolism, including three genes associated with soluble sugar metabolism (FBA1, SS, and SWEET16) and eight genes linked to organic acid metabolism (ADH1, GABP1, GABP2, GABP3, GABP4, ICL, ME1, and PDC4). These data indicated that differences in citric acid content between the two varieties mainly stemmed from differences in the regulation of the citric acid degradation pathway, which relies mainly on the γ-aminobutyric acid (GABA) branch rather than the isocitric acid lyase (ICL) pathway. Citric acid accumulation in pomegranate fruit was driven by metabolic fluxes rather than vesicular storage capacity. Weighted gene co-expression network analysis (WGCNA) uncovered a significant citric acid content associated module (r = -0.72) and predicted six core transcriptional regulators (bHLH42, ERF4, ERF062, WRKY6, WRKY23, and WRKY28) within this network. Notably, bHLH42, ERF4, and WRKY28 showed significant positive correlations with citric acid content, whereas ERF062, WRKY6, and WRKY23 demonstrated significant negative correlations. Our findings provide comprehensive insights into the genetic architecture governing soluble sugars and organic acids homeostasis in pomegranate, offering both a novel mechanistic understanding of fruit acidity regulation and valuable molecular targets for precision breeding of fruit quality traits.
Collapse
Affiliation(s)
- Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yilong Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Lin X, Li S, Shi Y, Ma Y, Li Y, Tan H, Zhang B, Xu C, Chen K. CitGATA7 interact with histone acetyltransferase CitHAG28 to promote citric acid degradation by regulating the glutamine synthetase pathway in citrus. MOLECULAR HORTICULTURE 2025; 5:8. [PMID: 39891226 PMCID: PMC11786515 DOI: 10.1186/s43897-024-00126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 02/03/2025]
Abstract
Organic acid is a crucial indicator of fruit quality traits. Citric acid, the predominant organic acid in citrus fruit, directly influences its edible quality and economic value. While the transcriptional regulatory mechanisms of citric acid metabolism have been extensively studied, the understanding about the transcriptional and epigenetic co-regulation mechanisms is limited. This study characterized a transcription factor, CitGATA7, which directly binds to and activates the expression of genes associated with the glutamine synthetase pathway regulating citric acid degradation. These genes include the aconitase encoding gene CitACO3, the isocitrate dehydrogenase encoding gene CitIDH1, and the glutamine synthetase encoding gene CitGS1. Furthermore, CitGATA7 physically interacts with the histone acetyltransferase CitHAG28 to enhance histone 3 acetylation levels near the transcription start site of CitACO3, CitIDH1, and CitGS1, thereby increasing their transcription and promoting citric acid degradation. The findings demonstrate that the CitGATA7-CitHAG28 protein complex transcriptionally regulate the expression of the GS pathway genes, i.e., CitACO3, CitIDH1, and CitGS1, via histone acetylation, thus promoting citric acid catabolism. This study establishes a direct link between transcriptional regulation and histone acetylation regarding citric acid metabolism, providing insights for strategies to manipulate organic acid accumulation in fruit.
Collapse
Affiliation(s)
- Xiahui Lin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yuchen Ma
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yinchun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Haohan Tan
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
| |
Collapse
|
3
|
Miao S, Wei X, Zhu L, Ma B, Li M. The art of tartness: the genetics of organic acid content in fresh fruits. HORTICULTURE RESEARCH 2024; 11:uhae225. [PMID: 39415975 PMCID: PMC11480666 DOI: 10.1093/hr/uhae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Organic acids are major determinants of fruit flavor and a primary focus of fruit crop breeding. The accumulation of organic acids is determined by their synthesis, degradation, and transport, all of which are manipulated by sophisticated genetic mechanisms. Constant exploration of the genetic basis of organic acid accumulation, especially through linkage analysis, association analysis, and evolutionary analysis, have identified numerous loci in recent decades. In this review, the genetic loci and genes responsible for malate and citrate contents in fruits are discussed from the genetic perspective. Technologies such as gene transformation and genome editing as well as efficient breeding using marker-assisted selection (MAS) and genomic selection (GS) are expected to break the bottleneck of traditional fruit crop breeding and promote fruit quality improvement.
Collapse
Affiliation(s)
- Shixue Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Li X, Zeng Y, Wang T, Jiang B, Liao M, Lv Y, Li J, Zhong Y. Dynamic Analysis of the Fruit Sugar-Acid Profile in a Fresh-Sweet Mutant and Wild Type in 'Shatangju' ( Citrus reticulata cv.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2722. [PMID: 39409592 PMCID: PMC11478557 DOI: 10.3390/plants13192722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Citrate is a major determinant of fruit flavor quality. Currently, citrus species and/or varieties with significant alterations in citrate level have greatly advanced the molecular basis of citrate accumulation in fruit. However, in-depth dissections of the molecular mechanism specific to citrate accumulation are still limited due to the lack of mutants, especially within one single variety. In this study, a fresh-sweet 'Shatangju' mutant (Citrus reticulata cv.) was obtained during a survey of citrus resources in Guangdong, China, and the phenotype, fruit morphology, and primary flavor profiles were comparatively analyzed. Unlike the wild-type 'Shatangju' (WT), the mutant (MT) material exhibited a dwarfed and multi-branched tree shape, delayed flowering and fruit ripening at maturity, a prolonged fruit tree-retention time, and a decreased single fruit weight at maturity. Dynamic measurement of the metabolite levels further suggested that the contents and fluctuation patterns of vitamin C, malate, quinate, and oxalate showed no obvious difference between MT and MT fruits, while the citrate level in MT fruits significantly decreased over various developmental stages, ranging from 0.356 to 1.91 mg g-1 FW. In addition, the accumulation patterns of the major soluble sugars (sucrose, fructose, and glucose), as well as the sugar/acid ratio, were also altered in MT fruits during development. Taken together, this study provides a novel acid-free 'Shatangju' mutant, which can serve as a powerful tool for the research of fruit flavor quality, especially for the comprehensive understanding of the molecular mechanism of citrate accumulation in fruits.
Collapse
Affiliation(s)
- Xiangyang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Yuan Zeng
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ting Wang
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
| | - Mingjing Liao
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanda Lv
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Juan Li
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| |
Collapse
|
5
|
Khan M, Dahro B, Wang Y, Wang M, Xiao W, Qu J, Zeng Y, Fang T, Xiao P, Xu X, Li C, Liu JH. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2385-2401. [PMID: 38985498 DOI: 10.1111/tpj.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.
Collapse
Affiliation(s)
- Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yike Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Sun Y, Yang X, Wu R, Lv S, Li Y, Jia H, Yang Y, Li B, Chen W, Allan AC, Jiang G, Shi YN, Chen K. DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1718-1734. [PMID: 38896078 DOI: 10.1111/jipb.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8'-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.
Collapse
Affiliation(s)
- Yunfan Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongrong Wu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shouzheng Lv
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunduan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Haoran Jia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yuying Yang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan-Na Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
7
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
8
|
Ma X, Sheng L, Li F, Zhou T, Guo J, Chang Y, Yang J, Jin Y, Chen Y, Lu X. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway. THE NEW PHYTOLOGIST 2024; 242:1131-1145. [PMID: 38482565 DOI: 10.1111/nph.19671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024]
Abstract
Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.
Collapse
Affiliation(s)
- Xiaochuan Ma
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Ling Sheng
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Feifei Li
- Institute of Horticulture, Hunan Academy of Agricultural Science, 410125, Changsha, China
| | - Tie Zhou
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Jing Guo
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuanyuan Chang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Junfeng Yang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yan Jin
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuewen Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Xiaopeng Lu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| |
Collapse
|
9
|
Xie J, Chen Y, Yu Z, Wang J, Liang G, Gao P, Sun D, Wang W, Shu Z, Yin D, Li J. Estimating stomatal conductance of citrus under water stress based on multispectral imagery and machine learning methods. FRONTIERS IN PLANT SCIENCE 2023; 14:1054587. [PMID: 36844051 PMCID: PMC9950644 DOI: 10.3389/fpls.2023.1054587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Canopy stomatal conductance (Sc) indicates the strength of photosynthesis and transpiration of plants. In addition, Sc is a physiological indicator that is widely employed to detect crop water stress. Unfortunately, existing methods for measuring canopy Sc are time-consuming, laborious, and poorly representative. METHODS To solve these problems, in this study, we combined multispectral vegetation index (VI) and texture features to predict the Sc values and used citrus trees in the fruit growth period as the research object. To achieve this, VI and texture feature data of the experimental area were obtained using a multispectral camera. The H (Hue), S (Saturation) and V (Value) segmentation algorithm and the determined threshold of VI were used to obtain the canopy area images, and the accuracy of the extraction results was evaluated. Subsequently, the gray level co-occurrence matrix (GLCM) was used to calculate the eight texture features of the image, and then the full subset filter was used to obtain the sensitive image texture features and VI. Support vector regression, random forest regression, and k-nearest neighbor regression (KNR) Sc prediction models were constructed, which were based on single and combined variables. RESULTS The analysis revealed the following: 1) the accuracy of the HSV segmentation algorithm was the highest, achieving more than 80%. The accuracy of the VI threshold algorithm using excess green was approximately 80%, which achieved accurate segmentation. 2) The citrus tree photosynthetic parameters were all affected by different water supply treatments. The greater the degree of water stress, the lower the net photosynthetic rate (Pn), transpiration rate (Tr), and Sc of the leaves. 3) In the three Sc prediction models, The KNR model, which was constructed by combining image texture features and VI had the optimum prediction effect (training set: R2 = 0.91076, RMSE = 0.00070; validation set; R2 = 0.77937, RMSE = 0.00165). Compared with the KNR model, which was only based on VI or image texture features, the R2 of the validation set of the KNR model based on combined variables was improved respectively by 6.97% and 28.42%. DISCUSSION This study provides a reference for large-scale remote sensing monitoring of citrus Sc by multispectral technology. Moreover, it can be used to monitor the dynamic changes of Sc and provide a new technique for gaining a better understanding of the growth status and water stress of citrus crops.
Collapse
Affiliation(s)
- Jiaxing Xie
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yufeng Chen
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Zhenbang Yu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Jiaxin Wang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Gaotian Liang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Peng Gao
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Daozong Sun
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weixing Wang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Zuna Shu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China
| | - Dongxiao Yin
- Department of Mechanical and Electrical Engineering, Luoding Polytechnic, Yunfu, China
| | - Jun Li
- College of Engineering, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Xu W, Liu Z, Zhao Z, Zhang S, Li M, Guo D, Liu JH, Li C. The functional analysis of sugar transporter proteins in sugar accumulation and pollen tube growth in pummelo ( Citrus grandis). FRONTIERS IN PLANT SCIENCE 2023; 13:1106219. [PMID: 36684762 PMCID: PMC9846575 DOI: 10.3389/fpls.2022.1106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Sugar transporter proteins (STPs) play vital roles in sugar transport and allocation of carbon sources in plants. However, the evolutionary dynamics of this important gene family and their functions are still largely unknown in citrus, which is the largest fruit crop in the world. In this study, fourteen non-redundant CgSTP family members were identified in pummelo (Citrus grandis). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of CgSTPs. Moreover, CgSTP4, 11, 13, 14 were proofed to be localized in plasma membrane and have glucose transport activity in yeast. The hexose content were significantly increased with the transient overexpression of CgSTP11 and CgSTP14. In addition, antisense repression of CgSTP4 induced the shorter pollen tube length in vitro, implying the potential role of CgSTP4 in pummelo pollen tube growth. Taken together, this work explored a framework for understanding the physiological role of CgSTPs and laid a foundation for future functional studies of these members in citrus species.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ziyan Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Shuhang Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|