1
|
Mao S, Wang J, Guo Z, Huang H, Wang S, Fei D, Liu J, Wu Q, Nie J, Wu Q, Huang K. Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response. PHYSIOLOGIA PLANTARUM 2025; 177:e70037. [PMID: 39790042 DOI: 10.1111/ppl.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.
Collapse
Affiliation(s)
- Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Zhijun Guo
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Huiping Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Shengze Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Dandan Fei
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Juan Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qi Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jin Nie
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
2
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
3
|
Akram W, Khan I, Rehman A, Munir B, Guo J, Li G. A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents. PLANTS (BASEL, SWITZERLAND) 2024; 13:1698. [PMID: 38931131 PMCID: PMC11207431 DOI: 10.3390/plants13121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| |
Collapse
|
4
|
Li R, Zhou Z, Zhao X, Li J. Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth. Foods 2024; 13:696. [PMID: 38472809 DOI: 10.3390/foods13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Broccoli is a popular cruciferous vegetable that is well known for its abundant health-promoting biochemicals. The most important of these beneficial biochemicals are glucosinolates, including glucoraphanin and glucobrassicin. Glucoraphanin and glucobrassicin can be broken down by myrosinases into sulforaphane and indole-3-carbinol, which have been demonstrated to have potent cancer-preventive properties. Efforts to increase glucoraphanin in broccoli seedlings have long been a focus; however, increasing glucoraphanin and glucobrassicin simultaneously, as well as enhancing myrosinase activity to release more sulforaphane and indole-3-carbinol, have yet to be investigated. This study aims to investigate the impact of the combined application of tryptophan and methionine on the accumulation of sulforaphane and indole-3-carbinol, as well as their precursors. Furthermore, we also examined whether this application has any effects on seedling growth and the presence of other beneficial compounds. We found that the application of methionine and tryptophan not only increased the glucoraphanin content by 2.37 times and the glucobrassicin content by 3.01 times, but that it also caused a higher myrosinase activity, resulting in a1.99 times increase in sulforaphane and a 3.05 times increase in indole-3-carbinol. In addition, better plant growth and an increase in amino acids and flavonoids were observed in broccoli seedlings with this application. In conclusion, the simultaneous application of tryptophan and methionine to broccoli seedlings can effectively enhance their health-promoting value and growth. Our study provides a cost-effective and multi-benefit strategy for improving the health value and yield of broccoli seedlings, benefiting both consumers and farmers.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|