1
|
Wu Q, Wang F, Chen Y, Zou W, Zhu Z. Diazotrophic community in the sediments of Poyang Lake in response to water level fluctuations. Front Microbiol 2024; 15:1324313. [PMID: 38371932 PMCID: PMC10869460 DOI: 10.3389/fmicb.2024.1324313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Water level fluctuations (WLFs) are typical characteristic of floodplain lakes and dominant forces regulating the structure and function of lacustrine ecosystems. The sediment diazotrophs play important roles in contributing bioavailable nitrogen to the aquatic environment. However, the relationship between the diazotrophic community and WLFs in floodplain lakes is unknown. In this paper, we carried out a comprehensive investigation on the alpha diversity, abundance, composition and co-occurrence network of the sediment diazotrophs during different water level phases in Poyang Lake. There were no regular variation patterns in the alpha diversity and abundance of the sediment diazotrophs with the water level phase transitions. The relative abundance of some diazotrophic phyla (including Alphaproteobacteria, Deltaproteobacteri, Euryarchaeota, and Firmicutes) and genera (including Geobacter, Deferrisoma, Desulfuromonas, Rivicola, Paraburkholderia, Methylophilus, Methanothrix, Methanobacterium, and Clostridium) was found to change with the water level phase transitions. The results of ANOSIM, PerMANOVA, and DCA at the OTU level showed that the diazotrophic community structure in the low water level phase was significantly different from that in the two high water level phases, while there was no significant difference between the two high water level phases. These results indicated that the diazotrophic community was affected by the declining water level in terms of the composition, while the rising water level contributed to the recoveries of the diazotrophic community. The diazotrophs co-occurrence network was disrupted by the declining water level, but it was strengthened by the rising water level. Moreover, redundancy analysis showed that the variation of the diazotrophic community composition was mostly related to sediment total nitrogen (TN) and total phosphorous (TP). Interestingly, the levels of sediment TN and TP were also found to vary with the water level phase transitions. Therefore, it might be speculated that the WLFs may influence the sediment TN and TP, and in turn influence the diazotrophic community composition. These data can contribute to broadening our understanding of the ecological impacts of WLFs and the nitrogen fixation process in floodplain lakes.
Collapse
Affiliation(s)
- Qiang Wu
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Key Laboratory of Poyang Lake Water Resources and Environment, Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Fei Wang
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Yuwei Chen
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Wenxiang Zou
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Zhigang Zhu
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| |
Collapse
|
2
|
Mi W, Luo F, Liu W, Qin Y, Zhang Y, Liu K, Li W. Nitrogen addition enhances seed yield by improving soil enzyme activity and nutrients. PeerJ 2024; 12:e16791. [PMID: 38259666 PMCID: PMC10802157 DOI: 10.7717/peerj.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nitrogen (N) addition is a simple and effective field management approach to enhancing plant productivity. Nonetheless, the regulatory mechanisms governing nitrogen concentrations and their effect on soil enzyme activity, nutrient levels, and seed yield in the Festuca kirilowii seed field have yet to be elucidated. Therefore, this study sought to investigate the effect of N fertilizer application on soil enzyme activities, soil nutrients, and seed yield of F. kirilowii Steud cv. Huanhu, the only domesticated variety in the Festuca genus of the Poaceae family, was investigated based on two-year field experiments in the Qinghai-Tibet Plateau (QTP). Results showed that N input significantly affected soil nutrients (potential of hydrogen, total nitrogen, organic matter, and total phosphorus). In addition, soil enzyme activities (urease, catalase, sucrase, and nitrate reductase) significantly increased in response to varying N concentrations, inducing changes in soil nutrient contents. Introducing N improved both seed yield and yield components (number of tillers and number of fertile tillers). These findings suggest that the introduction of different concentrations of N fertilizers can stimulate soil enzyme activity, thus hastening nutrient conversion and increasing seed yield. The exhaustive evaluation of the membership function showed that the optimal N fertilizer treatment was N4 (75 kg·hm-2) for both 2022 and 2023. This finding provides a practical recommendation for improving the seed production of F. kirilowii in QTP.
Collapse
Affiliation(s)
- Wenbo Mi
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Feng Luo
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Yan Qin
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Yongchao Zhang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Kaiqiang Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| | - Wen Li
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| |
Collapse
|
3
|
Gu Y, Chen X, Shen Y, Chen X, He G, He X, Wang G, He H, Lv Z. The response of nutrient cycle, microbial community abundance and metabolic function to nitrogen fertilizer in rhizosphere soil of Phellodendron chinense Schneid seedlings. Front Microbiol 2023; 14:1302775. [PMID: 38173676 PMCID: PMC10762311 DOI: 10.3389/fmicb.2023.1302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Nitrogen (N) as an essential macronutrient affects the soil nutrient cycle, microbial community abundance, and metabolic function. However, the specific responses of microorganisms and metabolic functions in rhizosphere soil of Phellodendron chinense Schneid seedlings to N addition remain unclear. In this study, four treatments (CK, N5, N10 and N15) were conducted, and the soil physicochemical properties, enzyme activities, microbial community abundances and diversities, metabolism, and gene expressions were investigated in rhizosphere soil of P. chinense Schneid. The results showed that N addition significantly decreased rhizosphere soil pH, among which the effect of N10 treatment was better. N10 treatment significantly increased the contents of available phosphorus (AP), available potassium (AK), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and sucrase (SU) activity, as well as fungal diversity and the relative expression abundances of amoA and phoD genes in rhizosphere soil, but observably decreased the total phosphorus (TP) content, urease (UR) activity and bacterial diversity, among which the pH, soil organic matter (SOM), AP, NH4+-N and NO3--N were the main environmental factors for affecting rhizosphere soil microbial community structure based on RDA and correlation analyses. Meanwhile, N10 treatment notably enhanced the absolute abundances of the uracil, guanine, indole, prostaglandin F2α and γ-glutamylalanine, while reduced the contents of D-phenylalanine and phenylacetylglycine in rhizosphere soil of P. chinense Schneid seedlings. Furthermore, the soil available nutrients represented a significant correlation with soil metabolites and dominant microorganisms, suggesting that N10 addition effectively regulated microbial community abundance and metabolic functions by enhancing nutrient cycle in the rhizosphere soil of P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xianglin Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yan Shen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| | - Gongxiu He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Guangjun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou, Guangdong, China
| |
Collapse
|
4
|
Santiago JM, Hallman LM, Fox JP, Pitino M, Shatters RG, Cano LM, Rossi L. Impacts of Oak Mulch Amendments on Rhizosphere Microbiome of Citrus Trees Grown in Florida Flatwood Soils. Microorganisms 2023; 11:2764. [PMID: 38004775 PMCID: PMC10673100 DOI: 10.3390/microorganisms11112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Rhizosphere interactions are an understudied component of citrus production. This is even more important in Florida flatwood soils, which pose significant challenges in achieving sustainable and effective fruit production due to low natural fertility and organic matter. Citrus growers apply soil amendments, including oak mulch, to ameliorate their soil conditions. Thus, the aim of this research was to evaluate the effects of oak mulch on citrus nutrient uptake, soil characteristics, and rhizosphere composition. The plant material consisted of 'Valencia' sweet orange (Citrus × sinensis) trees grafted on 'US-812' (C. reticulata × C. trifoliata) rootstock. The experiment consisted of two treatments, which included trees treated with oak mulch (300 kg of mulch per plot) and a control. The soil and leaf nutrient contents, soil pH, cation exchange capacity, moisture, temperature, and rhizosphere bacterial compositions were examined over the course of one year (spring and fall 2021). During the spring samplings, the citrus trees treated with oak mulch resulted in significantly greater soil Zn and Mn contents, greater soil moisture, and greater rhizosphere bacterial diversity compared to the control, while during the fall samplings, only a greater soil moisture content was observed in the treated trees. The soil Zn and Mn content detected during the spring samplings correlated with the significant increases in the diversity of the rhizosphere bacterial community composition. Similarly, the reduced rates of leaching and evaporation (at the soil surface) of oak mulch applied to Florida sandy soils likely played a large role in the significant increase in moisture and nutrient retention.
Collapse
Affiliation(s)
- John M. Santiago
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Lukas M. Hallman
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - John-Paul Fox
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Marco Pitino
- Plant Pathology Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Robert G. Shatters
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Fort Pierce, FL 34945, USA
| | - Liliana M. Cano
- Plant Pathology Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Lorenzo Rossi
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
5
|
Huang Z, Su Y, Lin S, Wu G, Cheng H, Huang G. Elevational patterns of microbial species richness and evenness across climatic zones and taxonomic scales. Ecol Evol 2023; 13:e10594. [PMID: 37818244 PMCID: PMC10560872 DOI: 10.1002/ece3.10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding the elevational patterns of soil microbial diversity is crucial for microbial biogeography, yet the elevational patterns of diversity across different climatic zones, trophic levels, and taxonomic levels remain unclear. In this study, we investigated the elevational patterns of species richness, species evenness and the relationship between species richness and evenness (RRE) in the forest soil bacterial and fungal communities and individual phyla across three climatic zones (tropical, subtropical, and cold temperate). Our results revealed that soil bacterial richness (alpha diversity) decreased with elevation, while fungal richness exhibited a hump-shaped pattern in the tropical and cold-temperate forests. Elevational patterns of evenness in bacterial and fungal communities showed the hump-shaped pattern across climatic zones, except for bacterial evenness in the tropical forest. Both bacterial and fungal richness and evenness were positively correlated in the subtropical and cold-temperate forests, while negatively correlated for bacteria in the tropical forest. The richness and evenness of soil microorganisms across different regions were controlled by climatic and edaphic factors. Soil pH was the most important factor associated with the variations in bacterial richness and evenness, while mean annual temperature explained the major variations in fungal richness. Our results addressed that the varieties of elevational patterns of microbial diversity in climatic zones and taxonomic levels, further indicating that richness and evenness may respond differently to environmental gradients.
Collapse
Affiliation(s)
- Zhengyi Huang
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Yangui Su
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Sinuo Lin
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Guopeng Wu
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Hao Cheng
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Gang Huang
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| |
Collapse
|
6
|
Liu C, Han D, Yang H, Liu Z, Gao C, Liu Y. Effects of peach branch organic fertilizer on the soil microbial community in peach orachards. Front Microbiol 2023; 14:1223420. [PMID: 37485500 PMCID: PMC10361838 DOI: 10.3389/fmicb.2023.1223420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Peach branches is a by-product of peach industry. Making peach branch waste into peach branch organic fertilizer (PBOF) is a promising strategy of ecological utilization. In this study, the effects of PBOF on the yield and quality of peach fruit, chemical properties of bulk soil, and soil bacterial communities were investigated in a peach orchard. The results showed that the yield and sugar/acid ratio of two high-level PBOF treatments (SDH.4 and SKR.4) was higher than no fertilization treatment (CK), but there was no significant difference compared to the commercial organic fertilizer treatment (SYT.4). Moreover, the three fertilizer treatments increased soil nutrients such as soil organic matter (SOM) and available potassium (AK), compared to CK. Furthermore, PBOF increased the relative abundance of beneficial bacteria, and enhanced the soil bacterial co-occurrence pattern and the potential function of bacterial communities to degrade exogenous compounds. In addition, thanks to the local policy of encouraging the use of PBOF, the use cost of PBOF is lower than commercial organic fertilizer, which is conducive to the development of ecological agriculture.
Collapse
Affiliation(s)
- Chenyu Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Defeng Han
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | | | - Zhiling Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Chengda Gao
- College of Humanities and Urban-Rural Development, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
7
|
Lin S, Liu Z, Wang Y, Li J, Wang G, Ye J, Wang H, He H. Soil metagenomic analysis on changes of functional genes and microorganisms involved in nitrogen-cycle processes of acidified tea soils. FRONTIERS IN PLANT SCIENCE 2022; 13:998178. [PMID: 36311106 PMCID: PMC9614370 DOI: 10.3389/fpls.2022.998178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is the first essential nutrient for tea growth. However, the effect of soil acidification on soil N cycle and N forms in tea plantation are unclear. In this study, the nitrogen contents, soil enzyme activity and N mineralization rate in acidified soil of tea plantation were measured. Moreover, the effects of soil acidification on N cycling functional genes and functional microorganisms were explored by soil metagenomics. The results showed that the NH4 +-N, available N and net N mineralization rate in the acidified tea soil decreased significantly, while the NO3 --N content increased significantly. The activities of sucrase, protease, catalase and polyphenol oxidase in the acidified tea soil decreased significantly. The abundance of genes related to ammonification, dissimilatory N reduction, nitrification and denitrification pathway in the acidified tea soil increased significantly, but the abundance of functional genes related to glutamate synthesis and assimilatory N reduction pathway were opposite. In addition, the abundance of Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Actinomadura, Nitrospira etc. microorganisms related to nitrification, denitrification and pathogenic effect increased significantly in the acidified tea soil. The correlation results showed that soil pH and N forms were correlated with soil enzyme activity, N cycling function genes and microbial changes. In conclusion, soil acidification results in significant changes in enzyme activity, gene abundance and microorganism involved in various N cycle processes in acidified tea soil, which leads to imbalance of soil N form ratio and is not conducive to N transformation and absorption of tea trees.
Collapse
Affiliation(s)
- Shunxian Lin
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijun Liu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuchao Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Li
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gege Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianghua Ye
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Haibin Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Longyan University, Longyan, China
| | - Haibin He
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|