1
|
Fan Y, Hussain S, Wang X, Yang M, Zhong X, Tao L, Li J, Zhou Y, Xiang C. Metabolomic and Transcriptomic Analyses of Flavonoid Biosynthesis in Different Colors of Soybean Seed Coats. Int J Mol Sci 2024; 26:294. [PMID: 39796145 PMCID: PMC11720147 DOI: 10.3390/ijms26010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors. Thus, the seed coat metabolomes and transcriptomes of five soybean germplasms with yellow (S141), red (S26), brown (S62), green (S100), and black (S124) seed coats were measured. In this study, 1645 metabolites were detected in the soybean seed coat, including 426 flavonoid compounds. The flavonoids differed among the different-colored seed coats of soybean germplasms, and flavonoids were distributed in all varieties. Procyanidins A1, B1, B6, C1, and B2, cyanidin 3-O-(6″-malonyl-arabinoside), petunidin 3-(6″-p-coumaryl-glucoside) 5-glucoside, and malvidin 3-laminaribioside were significantly upregulated in S26_vs._S141, S62_vs._S141, S100_vs._S141, and S124_vs._S141 groups, with a variation of 1.43-2.97 × 1013 in terms of fold. The differences in the contents of cyanidin 3-O-(6″-malonyl-arabinoside) and proanthocyanidin A1 relate to the seed coat color differences of red soybean. Malvidin 3-laminaribioside, petunidin 3-(6″-p-coumaryl-glucoside) 5-glucoside, cyanidin 3-O-(6″-malonyl-arabinoside), and proanthocyanidin A1 affect the color of black soybean. The difference in the contents of procyanidin B1 and malvidin 3-glucoside-4-vinylphenol might be related to the seed coat color differences of brown soybeans. Cyanidin 3-gentiobioside affects the color of green soybean. The metabolomic-transcriptomic combined analysis showed that flavonoid biosynthesis is the key synthesis pathway for soybean seed color formation. Transcriptome analysis revealed that the upregulation of most flavonoid biosynthesis genes was observed in all groups, except for S62_vs._S141, and promoted flavonoid accumulation. Furthermore, CHS, CHI, DFR, FG3, ANR, FLS, LAR, and UGT88F4 exhibited differential expression in all groups. This study broadens our understanding of the metabolic and transcriptomic changes in soybean seed coats of different colors and provides new insights into developing bioactive substances from soybean seed coats.
Collapse
Affiliation(s)
- Yuanfang Fan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Sajad Hussain
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
| | - Xianshu Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mei Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaojuan Zhong
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Lei Tao
- Sichuan Seed Station, Chengdu 610041, China; (L.T.); (J.L.)
| | - Jing Li
- Sichuan Seed Station, Chengdu 610041, China; (L.T.); (J.L.)
| | - Yonghang Zhou
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
2
|
Rodrigues T, Lima A, Wortham T, Arruda F, Janeiro A, Baptista J, Lima E. Essential Oil Composition and Anti-Cholinesterase Properties of Cryptomeria japonica Foliage Harvested in São Miguel Island (Azores) in Two Different Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:3277. [PMID: 39683070 DOI: 10.3390/plants13233277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The Azorean Cryptomeria japonica forest operations and wood industry generate considerable foliage biomass residues that are used for local essential oil (EO) production. However, research on seasonal variation of C. japonica EO remains scarce. In this study, the EOs from fresh Azorean C. japonica foliage (Az-CJF) collected in autumn (Aut) and spring (Spr) were obtained via hydrodistillation and investigated for their physical properties, yield, chemical composition, and bioactivities. Both EOs presented a strong odor, a yellowish color, a density around 0.9 g·mL-1, and similar yields (approximately 1% v/w, dry matter). Nevertheless, the GC-MS analyses showed a decrease in monoterpene hydrocarbons (MH) and an increase in oxygenated sesquiterpenes (OS) contents in Spr-EO compared with Aut-EO (16% vs. 35% for MH and 45% vs. 31% for OS, respectively). In addition, the predominant components were kaur-16-ene (23%) for Spr-EO and phyllocladene (19%) for Aut-EO, revealing that both EOs were rich in diterpene hydrocarbons (29% vs. 26%). Concerning its toxicity against brine shrimp, a low mortality (0-38%) was observed at a concentration range of 100-180 μg·mL-1. Regarding the anti-cholinesterase properties, both EOs were inactive against acetylcholinesterase but showed anti-butyrylcholinesterase activity superior to (-)-α-pinene, a major compound of Az-CJF EO (IC50 values: 84, 148, and 648 μg·mL-1 for Spr-EO, Aut-EO, and α-pinene, respectively). Overall, the results indicate the potential benefit of both seasonal EOs in Alzheimer's disease treatment. In conclusion, this study demonstrated that season strongly influences the Az-CJF EO quantitative composition and thus its bioactivity, aiding in the selection of the most high-quality raw materials for use in Azorean C. japonica EO aromatherapy industry.
Collapse
Affiliation(s)
- Tânia Rodrigues
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Biology (DB), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Ana Lima
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Tanner Wortham
- The Perfumery, 621 Park East Blvd., New Albany, IN 47150, USA
| | - Filipe Arruda
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Biology (DB), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Alexandre Janeiro
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - José Baptista
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Elisabete Lima
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
3
|
Pan G, Jin J, Liu H, Zhong C, Xie J, Qin Y, Zhang S. Integrative analysis of the transcriptome and metabolome provides insights into polysaccharide accumulation in Polygonatum odoratum (Mill.) Druce rhizome. PeerJ 2024; 12:e17699. [PMID: 39006032 PMCID: PMC11243984 DOI: 10.7717/peerj.17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background Polygonatum odoratum (Mill.) Druce is a traditional Chinese herb that is widely cultivated in China. Polysaccharides are the major bioactive components in rhizome of P. odoratum and have many important biological functions. Methods To better understand the regulatory mechanisms of polysaccharide accumulation in P. odoratum rhizomes, the rhizomes of two P. odoratum cultivars 'Y10' and 'Y11' with distinct differences in polysaccharide content were used for transcriptome and metabolome analyses, and the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified. Results A total of 14,194 differentially expressed genes (DEGs) were identified, of which 6,689 DEGs were down-regulated in 'Y10' compared with those in 'Y11'. KEGG enrichment analysis of the down-regulated DEGs revealed a significant enrichment of 'starch and sucrose metabolism', and 'amino sugar and nucleotide sugar metabolism'. Meanwhile, 80 differentially accumulated metabolites (DAMs) were detected, of which 52 were significantly up-regulated in 'Y11' compared to those in 'Y10'. The up-regulated DAMs were significantly enriched in 'tropane, piperidine and pyridine alkaloid biosynthesis', 'pentose phosphate pathway' and 'ABC transporters'. The integrated metabolomic and transcriptomic analysis have revealed that four DAMs, glucose, beta-D-fructose 6-phosphate, maltose and 3-beta-D-galactosyl-sn-glycerol were significantly enriched for polysaccharide accumulation, which may be regulated by 17 DEGs, including UTP-glucose-1-phosphate uridylyltransferase (UGP2), hexokinase (HK), sucrose synthase (SUS), and UDP-glucose 6-dehydrogenase (UGDH). Furthermore, 8 DEGs (sacA, HK, scrK, GPI) were identified as candidate genes for the accumulation of glucose and beta-D-fructose 6-phosphate in the proposed polysaccharide biosynthetic pathways, and these two metabolites were significantly associated with the expression levels of 13 transcription factors including C3H, FAR1, bHLH and ERF. This study provided comprehensive information on polysaccharide accumulation and laid the foundation for elucidating the molecular mechanisms of medicinal quality formation in P. odoratum rhizomes.
Collapse
Affiliation(s)
- Gen Pan
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Colleges of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Yuhui Qin
- Colleges of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Guan L, Lin N, Wan L, Yu F, Chen X, Xie X, Yuan C, Soaud SA, Abd Elhamid MA, Heakel RMY, Wang L, El-Sappah AH. Transcriptome analysis revealed the role of moderate exogenous methyl jasmonate treatments in enhancing the metabolic pathway of L-borneol in the Blumea balsamifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1391042. [PMID: 38988634 PMCID: PMC11234090 DOI: 10.3389/fpls.2024.1391042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024]
Abstract
Introduction Blumea balsamifera L. (Ainaxiang) DC. is a perennial herb of the compositae family. It is also the primary source of natural borneol. Endo-borneol, the principal medical active element in B. balsamifera, is anti-inflammatory, antioxidant, and analgesic; enhances medicine absorption; refreshes; and is used as a spice and in cosmetic. Industrialization of B. balsamifera is limited by its low L-borneol concentration. Thus, understanding the accumulation pattern of the secondary metabolite endo-borneol and its synthesis process in secondary metabolism is critical for increasing B. balsamifera active ingredient content and cultivation efficiency. Methods In this work, B. balsamifera was treated with varying concentrations (1.00 and 10.00 mmol/L) of methyl jasmonate (MeJA) as an exogenous foliar activator. The physiological parameters and L-borneol concentration were then assessed. Transcriptome sequencing of B. balsamifera-induced leaves was used to identify key genes for monoterpene synthesis. Results The treatment effect of 1 mmol/L MeJA was the best, and the leaves of all three leaf positions accumulated the highest L-borneol after 120 h, correspondingly 3.043 mg·g-1 FW, 3.346 mg·g-1 FW, and 2.044 mg·g-1 FW, with significant differences from the control. The main assembly produced 509,285 transcripts with min and max lengths of 201 and 23,172, respectively. DEG analysis employing volcano blots revealed 593, 224, 612, 2,405, 1,353, and 921 upregulated genes and 4, 123, 573, 1,745, 766, and 763 downregulated genes in the treatments D1_1vsCK, D1_10vsCK, D2_1vsCK, D2_10vsCK, D5_1vsCK, and D5_10vsCK. Interestingly, when exposed to MeJA treatments, the MEP pathway's unigenes express themselves more than those of the MVA route. Finally, when treated with 1 mmol/L, the genes DXR, DXS, and GPS showed increased expression over time. At the same time, a 10 mmol/L therapy resulted in elevated levels of ispH and GGPS. Discussion Our preliminary research indicates that exogenous phytohormones can raise the level of L borneol in B. balsamifera (L.) DC when given in the appropriate amounts. The most significant discovery made while analyzing the effects of different hormones and concentrations on B. balsamifera (L.) DC was the effect of 1 mmol/L MeJA treatment.
Collapse
Affiliation(s)
- Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Na Lin
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Xiaoli Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Rania M. Y. Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Linghui Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Yu Y, Huang J, Deng Z, Wang Y, Jiang X, Wang J. Soil Application of Bacillus subtilis Regulates Flavonoid and Alkaloids Biosynthesis in Mulberry Leaves. Metabolites 2024; 14:180. [PMID: 38668308 PMCID: PMC11052171 DOI: 10.3390/metabo14040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.
Collapse
Affiliation(s)
- Yanfang Yu
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Jinzhi Huang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Zhenhua Deng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Yawei Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Xinfeng Jiang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Junwen Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| |
Collapse
|
6
|
Wang H, Han T, Bai A, Xu H, Wang J, Hou X, Li Y. Potential Regulatory Networks and Heterosis for Flavonoid and Terpenoid Contents in Pak Choi: Metabolomic and Transcriptome Analyses. Int J Mol Sci 2024; 25:3587. [PMID: 38612398 PMCID: PMC11011442 DOI: 10.3390/ijms25073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Pak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.
Collapse
Affiliation(s)
- Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Tiantian Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Aimei Bai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Huanhuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| |
Collapse
|