1
|
Zaccarelli A, Mattina B, Pont L, Benavente F, Zanotti I, Cioffi F, Elviri L. Synergy of Analytical Characterization and Biocompatible Extractions for the Enhancement of High-Quality Biorefinery Products from Medicago sativa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:938-953. [PMID: 39723940 DOI: 10.1021/acs.jafc.4c09161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study presents the development of an analytical characterization strategy tailored to end products derived from an alfalfa (Medicago sativa)-based biorefinery with particular emphasis on protein concentrates and phenolic-enriched fractions. Our approach began with a comprehensive full-factorial experimental design aimed at optimizing the extraction process, taking care to design a biocompatible extraction protocol. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques were used to characterize the molecular profile of the extracts. In particular, the extracts showed a significant relative abundance of flavonoids and isoflavonoids in both their aglycone and glycosylated forms, in which antioxidant activity was evaluated. In addition, we elucidated the proteomic profiles of the protein concentrates. This proteomic characterization served as a valuable resource for understanding the differences between these end products, providing insights that can guide informed decisions about their potential applications.
Collapse
Affiliation(s)
| | - Beatrice Mattina
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Flavio Cioffi
- Contento Trade Srl, Pozzuolo de Friuli, 33050 Friuli-Venezia Giulia, Italy
| | - Lisa Elviri
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
3
|
Nam KH, Ordureau A. How does the neuronal proteostasis network react to cellular cues? Biochem Soc Trans 2024; 52:581-592. [PMID: 38488108 PMCID: PMC11613130 DOI: 10.1042/bst20230316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| |
Collapse
|
4
|
Pinard M, Moursli A, Coulombe B. Drugs targeting the particle for arrangement of quaternary structure (PAQosome) and protein complex assembly. Expert Opin Drug Discov 2024; 19:57-71. [PMID: 37840283 DOI: 10.1080/17460441.2023.2267974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The PAQosome is a 12-subunit complex that acts as a co-factor of the molecular chaperones HSP90 and HSP70. This co-chaperone has been shown to participate in assembly and maturation of several protein complexes, including nuclear RNA polymerases, RNA processing factors, the ribosome, PIKKs, and others. Subunits of the PAQosome, adaptors, and clients have been reported to be involved in various diseases, making them interesting targets for drug discovery. AREA COVERED In this review, the authors cover the detailed mechanisms of PAQosome and chaperone function. Specifically, the authors summarize the status of the PAQosome and some related chaperones and co-chaperones as candidate targets for drug discovery. Indeed, a number of compounds are currently being tested for the development of treatments against diseases, such as cancers and neurodegenerative conditions. EXPERT OPINION Searching for new drugs targeting the PAQosome requires a better understanding of PAQosome subunit interactions and the discovery of new interaction partners. Thus, PAQosome subunit crystallization is an important experiment to initiate virtual screening against new target and the development of in silico tools such as AlphaFold-multimer could accelerate the search for new interaction partner and determine more rapidly the interaction pocket needed for virtual drug screening.
Collapse
Affiliation(s)
- Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Jaiswal P, Singh A, Bajpai K, Tripathi K, Sahi AN, Barthakur S. Genetic diversity, transcript heterogeneity and allele mining of TaSKP1-6B-4 gene variants across diverse genotypes under terminal heat stress and genome wide characterization of TaSKP1 gene family from bread wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2023; 113:279-301. [PMID: 37985582 DOI: 10.1007/s11103-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
SKP1 (S-phase kinase protein1) is an essential regulatory component of SCF (Skp1-cullin-F-box) E3 ubiquitin ligases involved in maintenance of cellular protein homeostasis through ubiquitin mediated proteasome system (UPS). UPS play a key role in stress response and grain yield. Earlier, we isolated TaSKP1-6B-4, highly induced in flag leaf tissues (Accession No. KJ830759.1) of developing wheat caryopses under heat stress. To further assess the functional role of SKP1, genetic variability analysis was carried out in a panel of 25 contrasting germplasm through extensive phenotyping and transcript profiling of TaSKP1-6B-4 during anthesis under ambient and terminal heat stress (THS) in field experiments for two consecutive years. The analysis of variance revealed significant variations for all the traits studied. Higher H2(%), GCV, PCV, GA and GA% mean observed in tiller number per plant (23.81, 17.65, 5.71, 28, 30.86%) and grain number per head (30.27, 82.79, 60.16, 105.00, 108.64%) under THS over ambient temperature. Higher fold induction of TaSKP1-6B-4 transcripts was recorded in 10 genotypes viz. HD2967 (9.9), IC145456 (6.18) in flag leaf; while C-306 (15.88), RAJ3765 (8.37) in ear head. Allele mining of SKP1-6B-4 showed genotypic sequence variations. Whole genome wide search of SKP1 gene family identified 95 SKP1 genes which were structurally characterized. Grain yield, leaf senescence and other agronomic-morpho-physiological parameters combined with transcript profiling, cvHD2967, was found to be the best positively responsive to THS which by pedigree was not heat tolerant. We report a novel 2 year comprehensive field based analysis on collective genetic variability and SKP1/UPS modulation under a natural environmental setting. The data reveals potential functional role of UPS under THS and tolerant cultivars can be further utilized for clarifying the role of UPS mechanistically at the molecular level and for developing terminal heat stress tolerant wheat.
Collapse
Affiliation(s)
- Praful Jaiswal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Amity Institute of Biotechnology, Amity University, Noida, U.P, India
| | - Akshay Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Kriti Bajpai
- ICAR- Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Kabitha Tripathi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | | |
Collapse
|
6
|
Zinati Z, Nazari L. Deciphering the molecular basis of abiotic stress response in cucumber (Cucumis sativus L.) using RNA-Seq meta-analysis, systems biology, and machine learning approaches. Sci Rep 2023; 13:12942. [PMID: 37558755 PMCID: PMC10412635 DOI: 10.1038/s41598-023-40189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Abiotic stress in cucumber (Cucumis sativus L.) may trigger distinct transcriptome responses, resulting in significant yield loss. More insight into the molecular underpinnings of the stress response can be gained by combining RNA-Seq meta-analysis with systems biology and machine learning. This can help pinpoint possible targets for engineering abiotic tolerance by revealing functional modules and key genes essential for the stress response. Therefore, to investigate the regulatory mechanism and key genes, a combination of these approaches was utilized in cucumber subjected to various abiotic stresses. Three significant abiotic stress-related modules were identified by gene co-expression network analysis (WGCNA). Three hub genes (RPL18, δ-COP, and EXLA2), ten transcription factors (TFs), one transcription regulator, and 12 protein kinases (PKs) were introduced as key genes. The results suggest that the identified PKs probably govern the coordination of cellular responses to abiotic stress in cucumber. Moreover, the C2H2 TF family may play a significant role in cucumber response to abiotic stress. Several C2H2 TF target stress-related genes were identified through co-expression and promoter analyses. Evaluation of the key identified genes using Random Forest, with an area under the curve of ROC (AUC) of 0.974 and an accuracy rate of 88.5%, demonstrates their prominent contributions in the cucumber response to abiotic stresses. These findings provide novel insights into the regulatory mechanism underlying abiotic stress response in cucumber and pave the way for cucumber genetic engineering toward improving tolerance ability under abiotic stress.
Collapse
Affiliation(s)
- Zahra Zinati
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran.
| | - Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| |
Collapse
|
7
|
Cheng F, Yuan L, Wu Z, Li X, Xia W, Huang Z, Li Z, Mao S, Shen W. Ubiquitin-Like Protein FAT10 Promote Colorectal Cancer Progression by Affecting the Ubiquitination of Capn4. Dig Dis Sci 2023:10.1007/s10620-023-07995-1. [PMID: 37310562 DOI: 10.1007/s10620-023-07995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging evidence showed that FAT10 is a vital regulator of tumor occurrence and development. The molecular mechanisms underlying the specific role of FAT10 in colorectal cancer (CRC) are not yet known. AIMS To investigate whether FAT10 participates in the proliferation, invasion and metastasis of CRC. METHODS This study investigated the function and clinical significance of FAT10 protein expression in CRC. Furthermore, over-expression and knockdown experiments of FAT10 were developed to explore their effects on CRC cell migration and proliferation. Moreover, a molecular mechanism of FAT10 regulate calpain small subunit 1(Capn4) was explored. RESULTS In this research, the FAT10 expression level was elevated in CRC tissues compared to corresponding normal tissues. In addition, the elevated FAT10 expression level is significantly linked to advanced clinical stage and poor CRC prognosis. Furthermore, a very high expression of FAT10 was observed in CRC cells, and FAT10 overexpression significantly enhanced the in vivo proliferation, invasion, and metastasis of the cells, whereas knockdown of FAT10 inhibited all these cellular factors in both in vivo and in vitro environments. Moreover, the outcomes of this study suggested that FAT10 enhances colorectal cancer progression through enhancement of Capn4 expression, leading to the progression of various human tumors, as reported by previous research. The mechanism via which FAT10 promotes CRC cells proliferation, invasion, and metastasis involves modification of the ubiquitination and degradation processes of Capn4. CONCLUSION FAT10 is a vital regulator of the tumorigenesis and advancement of CRC, thus serving as a promising pharmaceutical target for treating CRC patients.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lebin Yuan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhao Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaodong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Weiyang Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zeyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhigang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengping Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Wei Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China.
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Li L, Wang K, Zhou Y, Liu X. Review: A silent concert in developing plants: Dynamic assembly of cullin-RING ubiquitin ligases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111662. [PMID: 36822503 PMCID: PMC10065934 DOI: 10.1016/j.plantsci.2023.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plants appear quiet: quietly, they break the ground, expand leaves, search for resources, alert each other to invaders, and heal their own wounds. In contrast to the stationary appearance, the inside world of a plant is full of movements: cells divide to increase the body mass and form new organs; signaling molecules migrate among cells and tissues to drive transcriptional cascades and developmental programs; macromolecules, such as RNAs and proteins, collaborate with different partners to maintain optimal organismal function under changing cellular and environmental conditions. All these activities require a dynamic yet appropriately controlled molecular network in plant cells. In this short review, we used the regulation of cullin-RING ubiquitin ligases (CRLs) as an example to discuss how dynamic biochemical processes contribute to plant development. CRLs comprise a large family of modular multi-unit enzymes that determine the activity and stability of diverse regulatory proteins playing crucial roles in plant growth and development. The mechanism governing the dynamic assembly of CRLs is essential for CRL activity and biological function, and it may provide insights and implications for the regulation of other dynamic multi-unit complexes involved in fundamental processes such as transcription, translation, and protein sorting in plants.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Biochem Biophys Res Commun 2022; 636:55-61. [DOI: 10.1016/j.bbrc.2022.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|