1
|
Liao YH, Zhang S. Combining multispectral and high-resolution 3D imaging for leaf vein segmentation and density measurement. FRONTIERS IN PLANT SCIENCE 2025; 16:1560220. [PMID: 40129737 PMCID: PMC11931515 DOI: 10.3389/fpls.2025.1560220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
Accurate leaf vein segmentation and vein density (VLA) measurement are crucial for understanding plant physiology. Traditional 2D imaging techniques often require labor-intensive and destructive processes, such as leaf flattening or chemical clearing, thereby limiting their practicality for high-throughput applications. In this study, we present a novel framework that integrates multispectral and high-resolution 3D imaging to enhance leaf vein segmentation and VLA measurement. By leveraging digital fringe projection, our system captures grayscale, multispectral, and 3D topographical data within a unified coordinate system. The integration of 3D information improves vein detection, particularly in low-contrast regions, while also enabling direct and accurate measurements of leaf area, vein length, and VLA. However, this approach also introduces some false positives in vein segmentation due to mesophyll surface variability. Despite these challenges, our high-resolution 3D imaging method shows significant potential for non-invasive phenotyping and trait assessment in complex, unstructured environments.
Collapse
Affiliation(s)
- Yi-Hong Liao
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
2
|
Bian X, Chen C, Wang Y, Qu C, Jiang J, Sun Y, Liu G. Identification of a potential homeodomain-like gene governing leaf size and venation architecture in birch. FRONTIERS IN PLANT SCIENCE 2025; 15:1502569. [PMID: 39845490 PMCID: PMC11751010 DOI: 10.3389/fpls.2024.1502569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing. A total of 267 HD-like genes were identified based on Arabidopsis HD-containing transcription factors, which were members of KNOTTED1-like homeobox (KNOX) family, BELL1-like homeobox (BLH) family, Zinc finger-HD (ZHD) family, HD-leucine zipper (HD-Zip) family, Golden2, ARR-B, Psr1 (GARP) family, WUSCHEL-related homeobox (WOX) family, and Myeloblastosis (MYB) and MYB-like family. Further, 41 HD-like genes showing co-expression with marker genes related to leaf vascular tissues exhibited differential expression during primary vein development. Among them, a potential HD-like gene (BpPHD4) of GARP family served as a negative factor in governing leaf size and venation patterning. Compared to non-transgenic plants, BpPHD4 repression transgenic plants showed increased leaf length, leaf width, leaf area, leaf thickness, spongy tissue thickness, stomata number, epidermal cell size, primary vein length, the distance between the secondary veins, and primary vein diameter, which was opposite to those of BpPHD4 overexpression transgenic plants. Meanwhile, reduced expression levels of BpPHD4 could remarkably promote phloem tissue development. Transcriptome analysis of BpPHD4 overexpression transgenic plants showed two candidate genes (Bpev01.c0518.g0018 and Bpev01.c2797.g0002) probably regulated by BpPHD4. To conclude, our findings contribute to a better understanding of HD-like superfamily genes and unravel the role of a potential HD-like gene in genetically controlling leaf size and venation patterning in birch, which provides clues to genetic improvement of woody plants with diverse geometric and topological properties of leaf vascular network.
Collapse
Affiliation(s)
- Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Harbin Daowai District Bureau of Agriculture and Rural Affairs, Harbin, China
| | - Yang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Encyclopedia of China Publishing House, Beijing, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yao Sun
- National Forestry and Grassland Administration Key State-owned Forest Areas Forest Resources Monitoring Center, Jiagedaqi, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Rodríguez-Ramírez EC, Arroyo F, Ames-Martínez FN, Andrés-Hernández AR. Tracking climate vulnerability across spatial distribution and functional traits in Magnolia gentryi in the Peruvian tropical montane cloud forest. AMERICAN JOURNAL OF BOTANY 2024; 111:e16400. [PMID: 39238126 DOI: 10.1002/ajb2.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024]
Abstract
PREMISE Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.
Collapse
Affiliation(s)
| | - Frank Arroyo
- Herbario MOL, Universidad Nacional Agraria La Molina, Av. La Universidad s./n., La Molina, Lima, Peru
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación en Ecología y Biodiversidad, Asociación ANDINUS, Sicaya, Huancayo, Peru
| | | |
Collapse
|
4
|
Boulc'h PN, Collewet G, Guillon B, Quellec S, Leport L, Musse M. Quantitative MRI imaging of parenchyma and venation networks in Brassica napus leaves: effects of development and dehydration. PLANT METHODS 2024; 20:69. [PMID: 38741140 PMCID: PMC11089671 DOI: 10.1186/s13007-024-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Characterisation of the structure and water status of leaf tissues is essential to the understanding of leaf hydraulic functioning under optimal and stressed conditions. Magnetic Resonance Imaging is unique in its capacity to access this information in a spatially resolved, non-invasive and non-destructive way. The purpose of this study was to develop an original approach based on transverse relaxation mapping by Magnetic Resonance Imaging for the detection of changes in water status and distribution at cell and tissue levels in Brassica napus leaves during blade development and dehydration. RESULTS By combining transverse relaxation maps with a classification scheme, we were able to distinguish specific zones of areoles and veins. The tissue heterogeneity observed in young leaves still occurred in mature and senescent leaves, but with different distributions of T2 values in accordance with the basipetal progression of leaf blade development, revealing changes in tissue structure. When subjected to severe water stress, all blade zones showed similar behaviours. CONCLUSION This study demonstrates the great potential of Magnetic Resonance Imaging in assessing information on the structure and water status of leaves. The feasibility of in planta leaf measurements was demonstrated, opening up many opportunities for the investigation of leaf structure and hydraulic functioning during development and/or in response to abiotic stresses.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, 35000, Rennes, France
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Univ Rennes, 35653, Le Rheu, France
| | - Guylaine Collewet
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, 35000, Rennes, France
| | - Baptiste Guillon
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, 35000, Rennes, France
| | - Stéphane Quellec
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, 35000, Rennes, France
| | - Laurent Leport
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Univ Rennes, 35653, Le Rheu, France
| | - Maja Musse
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, 35000, Rennes, France.
| |
Collapse
|
5
|
Liu D, Zhao C, Li G, Chen Z, Wang S, Huang C, Zhang P. Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24011. [PMID: 38621017 DOI: 10.1071/fp24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree-shrub community canopy area and the shrub-grass community open area in the transition zone between the Qinghai-Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in Cotoneaster multiflorus using the standardised major axis (SMA) method. The results show that the growth pattern of C. multiflorus , which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of C. multiflorus to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.
Collapse
Affiliation(s)
- Dingyue Liu
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chengzhang Zhao
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Geyang Li
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Zhini Chen
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China; and Xinglongshan Forest Ecosystem National Positioning Observation and Research Station, Lanzhou 730100, China
| | - Suhong Wang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chenglu Huang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Peixian Zhang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| |
Collapse
|
6
|
Zhao W, Fu P, Mao Q, Liu G, Li Y, Xia J, Zhao P. Effect of leaf phenology and morphology on the coordination between stomatal and minor vein densities. FRONTIERS IN PLANT SCIENCE 2023; 14:1051692. [PMID: 37564389 PMCID: PMC10411352 DOI: 10.3389/fpls.2023.1051692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Leaf phenology (evergreen vs. deciduous) and morphology (simple vs. compound) are known to be related to water use strategies in tree species and critical adaptation to certain climatic conditions. However, the effect of these two traits and their interactions on the coordination between minor vein density (MVD) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 108 tree species from plots in a primary subtropical forest in southern China, including tree species with different leaf morphologies and phenologies. We assessed nine leaf water-related functional traits for all species, including MVD, SD, leaf area (LA), minor vein thickness (MVT), and stomatal length (SL). The results showed no significant differences in mean LA and SD between either functional group (simple vs. compound and evergreen vs. deciduous). However, deciduous trees displayed a significantly higher mean MVD compared to evergreen trees. Similarly, compound-leaved trees have a higher (marginally significant) MVD than simple-leaved trees. Furthermore, we found that leaf morphology and phenology have significantly interactive effects on SL, and the compound-leafed deciduous trees exhibited the largest average SL among the four groups. There were significant correlations between the MVD and SD in all different tree groups; however, the slopes and interceptions differed within both morphology and phenology. Our results indicate that MVD, rather than SD, may be the more flexible structure for supporting the coordination between leaf water supply and demand in different leaf morphologies and phenologies. The results of the present study provide mechanistic understandings of the functional advantages of different leaf types, which may involve species fitness in community assembly and divergent responses to climate changes.
Collapse
Affiliation(s)
- Wanli Zhao
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Peili Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, Yunnan, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, China
| | - Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guolan Liu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, China
| | - Yuanqiu Li
- Guangdong Shimentai National Nature Reserve, Guangdong Forestry Administration, Qingyuan, Guangdong, China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Luo Q, Ma Y, Chen Z, Xie H, Wang Y, Zhou L, Ma Y. Biochemical responses of hairgrass ( Deschampsia caespitosa) to hydrological change. FRONTIERS IN PLANT SCIENCE 2022; 13:987845. [PMID: 36226294 PMCID: PMC9549154 DOI: 10.3389/fpls.2022.987845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 05/17/2023]
Abstract
Plant growth and development are closely related to water availability. Water deficit and water excess are detrimental to plants, causing a series of damage to plant morphology, physiological and biochemical processes. In the long evolutionary process, plants have evolved an array of complex mechanisms to combat against stressful conditions. In the present study, the duration-dependent changes in ascorbate (AsA) and glutathione (GSH) contents and activities of enzymes involved in the AsA-GSH cycle in hairgrass (Deschampsia caespitosa) in response to water stress was investigated in a pot trial using a complete random block design. The treatments were as follows: (1) heavily waterlogging, (2) moderate waterlogging, (3) light waterlogging, (4) light drought, (5) moderate drought, (6) heavily drought, and (7) a control (CK) with plant be maintained at optimum water availability. The hairgrass plants were subjected to waterlogging or drought for 7, 14, 21 and 28 days and data were measured following treatment. Results revealed that hairgrass subjected to water stress can stimulate enzymatic activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and L-galactono-1, 4-lactone dehydrogenase (GalLDH), switched on the ascorbate-glutathione (AsA-GSH) cycle and the L-galactose synthesis, up-regulated the contents of AsA and GSH, and maintained higher ratios of ascorbate to dehydroascorbate (AsA/DHA) and reduced glutathione to oxidized glutathione (GSH/GSSG) to alleviate potential oxidative damage. However, the light waterlogging did not induce hairgrass under stress to switch on the AsA-GSH pathway. In general, the critic substances and enzyme activities in AsA-GSH metabolic pathway increased as the increase of water stress intensity. As the increase of exposure duration, the critic antioxidant substances content and enzyme activities increased first and then maintained a relatively stable higher level. Our findings provide comprehensive information on biochemical responses of hairgrass to hydrological change, which would be a major step for accelerating ecological restoration of degradation alpine marshes in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Qiaoyu Luo
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yanlong Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- *Correspondence: Yushou Ma,
| |
Collapse
|