1
|
Martina A, Ferroni L, Marrocchino E. The Soil-Plant Continuity of Rare Earth Elements: Insights into an Enigmatic Class of Xenobiotics and Their Interactions with Plant Structures and Processes. J Xenobiot 2025; 15:46. [PMID: 40126264 PMCID: PMC11932217 DOI: 10.3390/jox15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rare earth elements (REEs) are increasingly present in the environment owing to their extensive use in modern industries, yet their interactions with plants remain poorly understood. This review explores the soil-plant continuum of REEs, focusing on their geochemical behavior in soil, the mechanisms of plant uptake, and fractionation processes. While REEs are not essential for plant metabolism, they interact with plant structures and interfere with the normal functioning of biological macromolecules. Accordingly, the influence of REEs on the fundamental physiological functions of plants is reviewed, including calcium-mediated signalling and plant morphogenesis. Special attention is paid to the interaction of REEs with photosynthetic machinery and, particularly, the thylakoid membrane. By examining both the beneficial effects at low concentrations and toxicity at higher levels, this review provides some mechanistic insights into the hormetic action of REEs. It is recommended that future research should address knowledge gaps related to the bioavailability of REEs to plants, as well as the short- and long-range transport mechanisms responsible for REE fractionation. A better understanding of REE-plant interactions will be critical in regard to assessing their ecological impact and the potential risks in terms of agricultural and natural ecosystems, to ensure that the benefits of using REEs are not at the expense of environmental integrity or human health.
Collapse
Affiliation(s)
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (E.M.)
| | | |
Collapse
|
2
|
El-Mejjaouy Y, Belmrhar L, Zeroual Y, Dumont B, Mercatoris B, Oukarroum A. PCA-based detection of phosphorous deficiency in wheat plants using prompt fluorescence and 820 nm modulated reflection signals. PLoS One 2023; 18:e0286046. [PMID: 37224124 DOI: 10.1371/journal.pone.0286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Phosphorus deficiency induces biochemical and morphological changes which affect crop yield and production. Prompt fluorescence signal characterizes the PSII activity and electron transport from PSII to PSI, while the modulated light reflection at 820 (MR 820) nm investigates the redox state of photosystem I (PSI) and plastocyanin (PC). Therefore, combining information from modulated reflection at 820 nm with chlorophyll a fluorescence can potentially provide a more complete understanding of the photosynthetic process and integrating other plant physiological measurements may help to increase the accuracy of detecting the phosphorus deficiency in wheat leaves. In our study, we combined the chlorophyll a fluorescence and MR 820 signals to study the response of wheat plants to phosphorus deficiency as indirect tools for phosphorus plant status characterization. In addition, we studied the changes in chlorophyll content index, stomatal conductance (gs), root morphology, and biomass of wheat plants. The results showed an alteration in the electron transport chain as a specific response to P deficiency in the I-P phase during the reduction of the acceptor side of PSI. Furthermore, P deficiency increased parameters related to the energy fluxes per reaction centers, namely ETo/RC, REo/RC, ABS/RC, and DIo/RC. P deficiency increased the values of MRmin and MRmax and decreased νred, which implies that the reduction of PSI and PC became slower as the phosphorus decreased. The principal component analysis of the modulated reflection and chlorophyll a fluorescence parameters, with the integration of the growth parameters as supplementary variables, accounted for over 71% of the total variance in our phosphorus data using two components and provided a reliable information on PSII and PSI photochemistry under P deficiency.
Collapse
Affiliation(s)
- Yousra El-Mejjaouy
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Laila Belmrhar
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Benjamin Dumont
- Pant Sciences / Crop Science, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Abdallah Oukarroum
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
3
|
Sun Y, Wang Q, Xiao H, Cheng J. Low Light Facilitates Cyclic Electron Flows around PSI to Assist PSII against High Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3537. [PMID: 36559650 PMCID: PMC9788621 DOI: 10.3390/plants11243537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photosystem II (PSII) of grapevine leaves is easily damaged under heat stress, but no such injury is observed when the leaves are heated in low light. To elucidate the mechanisms, we compared the photosynthetic characteristics of grapevine seedlings under heat treatments (42 °C) for 4 h in the dark or low light (200 μmol m-2 s-1). At 42 °C in the dark, the PSII maximum quantum yield (Fv/Fm) decreased significantly with the increase in time but did not change much in low light. The JIP (chlorophyll a fluorescence rise kinetics) test results showed that low light significantly alleviated the damage to the oxygen evolving complexes (OECs; the K-step was less visible) by heat stress. Further, in the presence of de novo D1 protein synthesis inhibitor chloramphenicol, Fv/Fm did not differ significantly between dark and light treatments under heat stress. The 50% re-reduction (RR50) of P700+ on cessation of far-red illumination was faster after light treatment than that in the dark. After exposure to 25 °C in a low light for 15 min, Y(NO) (the constitutive non-regulatory non-photochemical quenching) treated by heat stress and darkness was higher than that by heat stress and light. Overall, our results suggested that enhanced CEFs around PSI in low light could assist PSII against heat damage by maintaining the rate of PSII repair and inhibiting the non-radiative charge recombination in PSII reaction centers.
Collapse
Affiliation(s)
- Yongjiang Sun
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Qi Wang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Huijie Xiao
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|