1
|
Wang M, Liang X, Ma R, Lin W, Fang Z, Zhang L, Chen G, He J, Bai E, Pi E, Zhang P, Wang H, Shen C. Correlation Analysis of Secondary Metabolism and Endophytic Fungal Assembles Provide Insights Into Screening Efficient Taxol-Related Fungal Elicitors. PLANT, CELL & ENVIRONMENT 2025; 48:4196-4211. [PMID: 39925221 DOI: 10.1111/pce.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
The efficacy of Taxol, a natural anticancer drug, in the treatment of various types of cancers has been certified globally. Fungal elicitors have been reported as an impressive strategy for enhancing Taxol biosynthesis. We have investigated the effect of twig age on Taxol biosynthesis and the communities of endophytic fungi. A negative correlation between Taxol content and the complexity of the endophytic fungal community in twigs was predicted. Endogenous taxoids, similar to balancing valves, might have a specific effect on controlling the microbiota assembly in Taxus twigs. Utilising the special correlation, 11 isolates of twig age-associated fungi were used to screen new fungal elicitors involved in Taxol biosynthesis. Two efficient fungal elicitors, L01 (Guignardia) and J02 (Diaporthe), were identified, increasing the Taxol contents by 5.91- and 4.83-folds, respectively. It is confirmed that effective fungal elicitors may be negatively correlated with Taxol contents in Taxus tissues. Furthermore, the J02 and L01 fungal elicitors significantly induced the jasmonic acid (JA) content, speculating the involvement of MYC2a-controlled JA signalling in fungal elicitor-activated Taxol biosynthesis. Our data revealed the effect of twig age on Taxol biosynthesis of Taxus and provided a novel approach to screen effective fungal elicitors involved in Taxol biosynthesis.
Collapse
Affiliation(s)
- Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ruoyun Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wanting Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zijin Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lingxiao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Vimal SR, Singh JS, Kumar A, Prasad SM. The plant endomicrobiome: Structure and strategies to produce stress resilient future crop. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100236. [PMID: 38756233 PMCID: PMC11097330 DOI: 10.1016/j.crmicr.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Plants have a microbiome, a diverse community of microorganisms, including bacteria, fungi, and viruses, living inside and on their tissues. Versatile endophytic microorganisms inhabited in every plant part without causing disease and develop endophytic microbiome or endo-microbiome. Plant endo-microbiome are drawn by the nutrient rich micro-environment, and in turn some microbes mutualistically endorse and protect plant from adverse environmental stresses. Plant endo-microbiome interact within well-designed host equilibrium containing xylem, phloem, nutrients, phytohormones, metabolites and shift according to environmental and nutritional change. Plant endo-microbiome regulate and respond to environmental variations, pathogens, herbivores by producing stress regulators, organic acids, secondary metabolites, stress hormones as well as unknown substances and signalling molecules. Endomicrobiome efficiently synthesizes multiple bioactive compounds, stress phytohormones with high competence. The technological innovation as next generation genomics biology and high-throughput multiomics techniques stepping stones on the illumination of critical endo-microbiome communities and functional characterization that aid in improving plant physiology, biochemistry and immunity interplay for best crop productivity. This review article contains deeper insight in endomicrobiome related research work in last years, recruitment, niche development, nutrient dynamics, stress removal mechanisms, bioactive services in plant health development, community architecture and communication, and immunity interplay in producing stress resilient future crop.
Collapse
Affiliation(s)
- Shobhit Raj Vimal
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, School for Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj 211002, Uttar Pradesh, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| |
Collapse
|
3
|
Zabalgogeazcoa I, Arellano JB, Mellado-Ortega E, Barro F, Martínez-Castilla A, González-Blanco V, Vázquez de Aldana BR. Symbiotic fungi from a wild grass ( Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions. AOB PLANTS 2024; 16:plae013. [PMID: 38601215 PMCID: PMC11005784 DOI: 10.1093/aobpla/plae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.
Collapse
Affiliation(s)
- Iñigo Zabalgogeazcoa
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Juan B Arellano
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Elena Mellado-Ortega
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27710, USA
| | - Francisco Barro
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Ana Martínez-Castilla
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Virginia González-Blanco
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
4
|
Bashir A, Manzoor MM, Ahmad T, Farooq S, Sultan P, Gupta AP, Riyaz-Ul-Hassan S. Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol Res 2023; 276:127479. [PMID: 37639964 DOI: 10.1016/j.micres.2023.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malik Muzafar Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Aleynova OA, Nityagovsky NN, Ananev AA, Suprun AR, Ogneva ZV, Dneprovskaya AA, Beresh AA, Tyunin AP, Dubrovina AS, Kiselev KV. The Endophytic Microbiome of Wild Grapevines Vitis amurensis Rupr. and Vitis coignetiae Pulliat Growing in the Russian Far East. PLANTS (BASEL, SWITZERLAND) 2023; 12:2952. [PMID: 37631163 PMCID: PMC10460016 DOI: 10.3390/plants12162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Many grape endophytic microorganisms exhibit high potential for suppressing the development of grape diseases and stimulating grapevine growth and fitness, as well as beneficial properties of the crop. The microbiome of wild grapevines is a promising source of biocontrol agents, which can be beneficial for domesticated grapevines. Using next-generation sequencing (NGS) and classical microbiology techniques, we performed an analysis of bacterial and fungal endophytic communities of wild grapevines Vitis amurensis Rupr. and Vitis coignetiae Pulliat growing in the Russian Far East. According to the NGS analysis, 24 and 18 bacterial taxa from the class level were present in V. amurensis and V. coignetiae grapevines, respectively. Gammaproteobacteria (35%) was the predominant class of endophytic bacteria in V. amurensis and Alphaproteobacteria (46%) in V. coignetiae. Three taxa, namely Sphingomonas, Methylobacterium, and Hymenobacter, were the most common bacterial genera for V. amurensis and V. coignetiae. Metagenomic analysis showed the presence of 23 and 22 fungi and fungus-like taxa of class level in V. amurensis and V. coignetiae, respectively. The predominant fungal classes were Dothideomycetes (61-65%) and Tremellomycetes (10-11%), while Cladosporium and Aureobasidium were the most common fungal genera in V. amurensis and V. coignetiae, respectively. A comparative analysis of the endophytic communities of V. amurensis and V. coignetiae with the previously reported endophytic communities of V. vinifera revealed that the bacterial biodiversity of V. amurensis and V. coignetiae was similar in alpha diversity to V. vinifera's bacterial biodiversity. The fungal alpha diversity of V. amurensis and V. coignetiae was statistically different from that of V. vinifera. The beta diversity analysis of bacterial and fungal endophytes showed that samples of V. vinifera formed separate clusters, while V. amurensis samples formed a separate cluster including V. coignetiae samples. The data revealed that the endophytic community of bacteria and fungi from wild V. amurensis was richer than that from V. coignetiae grapes and cultivated V. vinifera grapes. Therefore, the data obtained in this work could be of high value in the search for potentially useful microorganisms for viticulture.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alina A. Dneprovskaya
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- The School of Natural Sciences, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Alina A. Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- The School of Natural Sciences, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Alexey P. Tyunin
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
6
|
Pereira EC, Zabalgogeazcoa I, Arellano JB, Ugalde U, Vázquez de Aldana BR. Diaporthe atlantica enhances tomato drought tolerance by improving photosynthesis, nutrient uptake and enzymatic antioxidant response. FRONTIERS IN PLANT SCIENCE 2023; 14:1118698. [PMID: 36818856 PMCID: PMC9929572 DOI: 10.3389/fpls.2023.1118698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/31/2023]
Abstract
Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.
Collapse
Affiliation(s)
- Eric C. Pereira
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Juan B. Arellano
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Unai Ugalde
- Biofungitek Limited Society (S.L.) Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Beatriz R. Vázquez de Aldana
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
7
|
Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023; 14:1105299. [PMID: 36876098 PMCID: PMC9978114 DOI: 10.3389/fmicb.2023.1105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Festuca rubra subsp. pruinosa is a perennial grass growing in sea cliffs where plants are highly exposed to salinity and marine winds, and often grow in rock fissures where soil is absent. Diaporthe species are one of the most abundant components of the root microbiome of this grass and several Diaporthe isolates have been found to produce beneficial effects in their host and other plant species of agronomic importance. In this study, 22 strains of Diaporthe isolated as endophytes from roots of Festuca rubra subsp. pruinosa were characterized by molecular, morphological, and biochemical analyses. Sequences of the nuclear ribosomal internal transcribed spacers (ITS), translation elongation factor 1-α (TEF1), beta-tubulin (TUB), histone-3 (HIS), and calmodulin (CAL) genes were analyzed to identify the isolates. A multi-locus phylogenetic analysis of the combined five gene regions led to the identification of two new species named Diaporthe atlantica and Diaporthe iberica. Diaporthe atlantica is the most abundant Diaporthe species in its host plant, and Diaporthe iberica was also isolated from Celtica gigantea, another grass species growing in semiarid inland habitats. An in vitro biochemical characterization showed that all cultures of D. atlantica produced indole-3-acetic acid and ammonium, and the strains of D. iberica produced indole 3-acetic acid, ammonium, siderophores, and cellulase. Diaporthe atlantica is closely related to D. sclerotioides, a pathogen of cucurbits, and caused a growth reduction when inoculated in cucumber, melon, and watermelon.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
8
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|