1
|
Chen B, Liu Y, Yang Y, Wang Q, Li S, Li F, Du L, Zhang P, Wang X, Zhang S, Zhang X, Kang Z, Wang X, Mao H. A system genetics analysis uncovers the regulatory variants controlling drought response in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1565-1584. [PMID: 39977251 PMCID: PMC12018837 DOI: 10.1111/pbi.14605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Plants activate a variable response to drought stress by modulating transcription of key genes. However, our knowledge of genetic variations governing gene expression in response to drought stress remains limited in natural germplasm. Here, we performed a comprehensive analysis of the transcriptional variability of 200 wheat accessions in response to drought stress by using a systems genetics approach integrating pan-transcriptome, co-expression networks, transcriptome-wide association study (TWAS), and expression quantitative trait loci (eQTLs) mapping. We identified 1621 genes and eight co-expression modules significantly correlated with wheat drought tolerance. We also defined 620 664 and 654 798 independent eQTLs associated with the expression of 17 429 and 18 080 eGenes under normal and drought stress conditions. Focusing on dynamic regulatory variants, we further identified 572 eQTL hotspots and constructed transcription factors governed drought-responsive network by the XGBoost model. Subsequently, by combining with genome-wide association study (GWAS), we uncovered a 369-bp insertion variant in the TaKCS3 promoter containing multiple cis-regulatory elements recognized by eQTL hotspot-associated transcription factors that enhance its transcription. Further functional analysis indicated that elevating TaKCS3 expression affects cuticular wax composition to reduce water loss during drought stress, and thereby increase drought tolerance. This study sheds light on the genome-wide genetic variants that influence dynamic transcriptional changes during drought stress and provides a valuable resource for the mining of drought-tolerant genes in the future.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yanyan Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiannan Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shumin Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Fangfang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Linying Du
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Peiyin Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuemin Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shuangxing Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoke Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Jyoti, Ritu, Gupta S, Shankar R. Comprehensive analysis of computational approaches in plant transcription factors binding regions discovery. Heliyon 2024; 10:e39140. [PMID: 39640721 PMCID: PMC11620080 DOI: 10.1016/j.heliyon.2024.e39140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription factors (TFs) are regulatory proteins which bind to a specific DNA region known as the transcription factor binding regions (TFBRs) to regulate the rate of transcription process. The identification of TFBRs has been made possible by a number of experimental and computational techniques established during the past few years. The process of TFBR identification involves peak identification in the binding data, followed by the identification of motif characteristics. Using the same binding data attempts have been made to raise computational models to identify such binding regions which could save time and resources spent for binding experiments. These computational approaches depend a lot on what way they learn and how. These existing computational approaches are skewed heavily around human TFBRs discovery, while plants have drastically different genomic setup for regulation which these approaches have grossly ignored. Here, we provide a comprehensive study of the current state of the matters in plant specific TF discovery algorithms. While doing so, we encountered several software tools' issues rendering the tools not useable to researches. We fixed them and have also provided the corrected scripts for such tools. We expect this study to serve as a guide for better understanding of software tools' approaches for plant specific TFBRs discovery and the care to be taken while applying them, especially during cross-species applications. The corrected scripts of these software tools are made available at https://github.com/SCBB-LAB/Comparative-analysis-of-plant-TFBS-software.
Collapse
Affiliation(s)
- Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Huang J, Jia Y, Pan Y, Lin H, Lv S, Nawaz M, Song B, Nie X. Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat. PLANT CELL REPORTS 2024; 43:254. [PMID: 39373738 DOI: 10.1007/s00299-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.
Collapse
Affiliation(s)
- Jiaqian Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Yanze Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuzuo Lv
- Luoyang Academy of Agriculture and Forestry Science, Luoyang Key Laboratory of Crop Molecular Biology and Germplasm Enhancement, Luoyang, 471000, Henan, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Wang J, Wang E, Cheng S, Ma A. Genetic insights into superior grain number traits: a QTL analysis of wheat-Agropyron cristatum derivative pubing3228. BMC PLANT BIOLOGY 2024; 24:271. [PMID: 38605289 PMCID: PMC11008026 DOI: 10.1186/s12870-024-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China.
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China.
| | - Erwei Wang
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| | - Shiping Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Aichu Ma
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| |
Collapse
|
5
|
Lin H, Shi T, Zhang Y, He C, Zhang Q, Mo Z, Pan W, Nie X. Genome-Wide Identification, Expression and Evolution Analysis of m6A Writers, Readers and Erasers in Aegilops_tauschii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2747. [PMID: 37514361 PMCID: PMC10385245 DOI: 10.3390/plants12142747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops.
Collapse
Affiliation(s)
- Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Ying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Chuyang He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Qiying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Zhiping Mo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling 712100, China
| |
Collapse
|
6
|
Tao W, Li R, Li T, Li Z, Li Y, Cui L. The evolutionary patterns, expression profiles, and genetic diversity of expanded genes in barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1168124. [PMID: 37180392 PMCID: PMC10171312 DOI: 10.3389/fpls.2023.1168124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Gene duplication resulting from whole-genome duplication (WGD), small-scale duplication (SSD), or unequal hybridization plays an important role in the expansion of gene families. Gene family expansion can also mediate species formation and adaptive evolution. Barley (Hordeum vulgare) is the world's fourth largest cereal crop, and it contains valuable genetic resources due to its ability to tolerate various types of environmental stress. In this study, 27,438 orthogroups in the genomes of seven Poaceae were identified, and 214 of them were significantly expanded in barley. The evolutionary rates, gene properties, expression profiles, and nucleotide diversity between expanded and non-expanded genes were compared. Expanded genes evolved more rapidly and experienced lower negative selection. Expanded genes, including their exons and introns, were shorter, they had fewer exons, their GC content was lower, and their first exons were longer compared with non-expanded genes. Codon usage bias was also lower for expanded genes than for non-expanded genes; the expression levels of expanded genes were lower than those of non-expanded genes, and the expression of expanded genes showed higher tissue specificity than that of non-expanded genes. Several stress-response-related genes/gene families were identified, and these genes could be used to breed barley plants with greater resistance to environmental stress. Overall, our analysis revealed evolutionary, structural, and functional differences between expanded and non-expanded genes in barley. Additional studies are needed to clarify the functions of the candidate genes identified in our study and evaluate their utility for breeding barley plants with greater stress resistance.
Collapse
Affiliation(s)
- Wenjing Tao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- *Correspondence: Yihan Li, ; Licao Cui,
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- *Correspondence: Yihan Li, ; Licao Cui,
| |
Collapse
|
7
|
Luo R, Pan W, Liu W, Tian Y, Zeng Y, Li Y, Li Z, Cui L. The barley DIR gene family: An expanded gene family that is involved in stress responses. Front Genet 2022; 13:1042772. [PMID: 36406120 PMCID: PMC9667096 DOI: 10.3389/fgene.2022.1042772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/09/2023] Open
Abstract
Gene family expansion plays a central role in adaptive divergence and, ultimately, speciation is influenced by phenotypic diversity in different environments. Barley (Hordeum vulgare) is the fourth most important cereal crop in the world and is used for brewing purposes, animal feed, and human food. Systematic characterization of expanded gene families is instrumental in the research of the evolutionary history of barley and understanding of the molecular function of their gene products. A total of 31,750 conserved orthologous groups (OGs) were identified using eight genomes/subgenomes, of which 1,113 and 6,739 were rapidly expanded and contracted OGs in barley, respectively. Five expanded OGs containing 20 barley dirigent genes (HvDIRs) were identified. HvDIRs from the same OG were phylogenetically clustered with similar gene structure and domain organization. In particular, 7 and 5 HvDIRs from OG0000960 and OG0001516, respectively, contributed greatly to the expansion of the DIR-c subfamily. Tandem duplication was the driving force for the expansion of the barley DIR gene family. Nucleotide diversity and haplotype network analysis revealed that the expanded HvDIRs experienced severe bottleneck events during barley domestication, and can thus be considered as potential domestication-related candidate genes. The expression profile and co-expression network analysis revealed the critical roles of the expanded HvDIRs in various biological processes, especially in stress responses. HvDIR18, HvDIR19, and HvDIR63 could serve as excellent candidates for further functional genomics studies to improve the production of barley products. Our study revealed that the HvDIR family was significantly expanded in barley and might be involved in different developmental processes and stress responses. Thus, besides providing a framework for future functional genomics and metabolomics studies, this study also identified HvDIRs as candidates for use in improving barley crop resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenqiang Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuan Tian
- Xintai Urban and Rural Development Group Co., Ltd., Taian, Shandong, China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
She K, Pan W, Yan Y, Shi T, Chu Y, Cheng Y, Ma B, Song W. Genome-Wide Identification, Evolution and Expressional Analysis of OSCA Gene Family in Barley ( Hordeum vulgare L.). Int J Mol Sci 2022; 23:13027. [PMID: 36361820 PMCID: PMC9653715 DOI: 10.3390/ijms232113027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 09/06/2023] Open
Abstract
The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10-3 and 0.391 × 10-3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops.
Collapse
Affiliation(s)
- Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ying Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yingqi Chu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yue Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bo Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
9
|
Yang G, Deng P, Guo Q, Shi T, Pan W, Cui L, Liu X, Nie X. Population transcriptomic analysis identifies the comprehensive lncRNAs landscape of spike in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:450. [PMID: 36127641 PMCID: PMC9490906 DOI: 10.1186/s12870-022-03828-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESULTS In this study, the lncRNA landscape of wheat spike was characterized through analysing a total of 186 spike RNA-seq datasets from 93 wheat genotypes. A total of 35,913 lncRNAs as well as 1,619 lncRNA-mRNA pairs comprised of 443 lncRNAs and 464 mRNAs were obtained. Compared to coding genes, these lncRNAs displayed rather low conservation among wheat and other gramineous species. Based on re-sequencing data, the genetic variations of these lncRNA were investigated and obvious genetic bottleneck were found on them during wheat domestication process. Furthermore, 122 lncRNAs were found to act as ceRNA to regulate endogenous competition. Finally, association and co-localization analysis of the candidate lncRNA-mRNA pairs identified 170 lncRNAs and 167 target mRNAs significantly associated with spike-related traits, including lncRNA.127690.1/TraesCS2A02G518500.1 (PMEI) and lncRNA.104854.1/TraesCS6A02G050300.1 (ATG5) associated with heading date and spike length, respectively. CONCLUSIONS This study reported the lncRNA landscape of wheat spike through the population transcriptome analysis, which not only contribute to better understand the wheat evolution from the perspective of lncRNA, but also lay the foundation for revealing roles of lncRNA playing in spike development.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qifan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|