1
|
Wang G, Wan X, Li X, Ou J, Li G, Deng H. Transcriptome-based analysis of key functional genes in the triterpenoid saponin synthesis pathway of Platycodon grandiflorum. BMC Genom Data 2024; 25:83. [PMID: 39333877 PMCID: PMC11438079 DOI: 10.1186/s12863-024-01266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Platycodon grandiflorum (P. grandiflorum) is a commonly used medicinal plant in China. Transcriptome sequencing studies of different tissues of P. grandiflorum have been widely conducted. However, studies on transcriptome sequencing and expression patterns of key genes in the saponin synthesis pathway of Tongcheng P. grandiflorum, a high-quality medicinal resource of different years, are relatively limited. RESULTS This study involved transcriptome sequencing and bioinformatics analysis of the roots from annual, biennial, and triennial P. grandiflorum in the Tongcheng area. After data filtering and assembly, we obtained 111.44 Gb of clean base data, including 742,880616 clean reads. We identified 5,156 differential expression unigenes between at least two sample groups, with differences noted among annual, biennial, and triennial P. grandiflorum plants. GO enrichment analysis annotated 3509, 1819, and 1393 DEGs in comparison TC1vsTC2, TC1vsTC3, and TC2vsTC3, respectively. Furthermore, KEGG enrichment analysis identified 16 genes encoding key enzymes in the terpene skeleton biosynthesis, sesquiterpene and triterpene biosynthesis pathways, including SE, AACT, FPPS, DXR, HMGR, HMGS, and DXS. The results of qRT-PCR experiments showed that most of the genes were most highly expressed in annual P. grandiflorum. CONCLUSIONS The present study provided transcriptomic data from the roots of Tongcheng P. grandiflorum of different years, which provides critical bioinformatics data on the growth and development of P. grandiflorum, laying a foundation for further research on saponins and identifying key enzymes involved in this process across different growth stages.
Collapse
Affiliation(s)
- Guoyu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Xiaoting Wan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Xiaolu Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinmei Ou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
| |
Collapse
|
2
|
Wu X, Cheng C, Ma R, Xu J, Ma C, Zhu Y, Ren Y. Genome-wide identification, expression analysis, and functional study of the bZIP transcription factor family and its response to hormone treatments in pea (Pisum sativum L.). BMC Genomics 2023; 24:705. [PMID: 37993794 PMCID: PMC10666455 DOI: 10.1186/s12864-023-09793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) protein is a plant-specific transcription factor involved in various biological processes, including light signaling, seed maturation, flower development, cell elongation, seed accumulation protein, and abiotic and biological stress responses. However, little is known about the pea bZIP family. RESULTS In this study, we identified 87 bZIP genes in pea, named PsbZIP1 ~ PsbZIP87, via homology analysis using Arabidopsis. The genes were divided into 12 subfamilies and distributed unevenly in 7 pea chromosomes. PsbZIPs in the same subfamily contained similar intron/exon organization and motif composition. 1 tandem repeat event and 12 segmental duplication events regulated the expansion of the PsbZIP gene family. To better understand the evolution of the PsbZIP gene family, we conducted collinearity analysis using Arabidopsis thaliana, Oryza sativa Japonica, Fagopyrum tataricum, Solanum lycopersicum, Vitis vinifera, and Brachypodium distachyon as the related species of pea. In addition, interactions between PsbZIP proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of PsbZIP expression was complex. We also evaluated the expression patterns of bZIP genes in different tissues and at different fruit development stages, all while subjecting them to five hormonal treatments. CONCLUSION These results provide a deeper understanding of PsbZIP gene family evolution and resources for the molecular breeding of pea. The findings suggested that PsbZIP genes, specifically PSbZIP49, play key roles in the development of peas and their response to various hormones.
Collapse
Affiliation(s)
- Xiaozong Wu
- Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Changhe Cheng
- China Tobacco Zhejiang Industrial Co., LTD, Hangzhou, 310000, People's Republic of China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianbo Xu
- Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Congcong Ma
- College of Medical Technology, Luoyang Polytechnic, Luoyang, 471000, China
| | - Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, 462500, China.
- Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
| | - Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
Lacchini E, Erffelinck ML, Mertens J, Marcou S, Molina-Hidalgo FJ, Tzfadia O, Venegas-Molina J, Cárdenas PD, Pollier J, Tava A, Bak S, Höfte M, Goossens A. The saponin bomb: a nucleolar-localized β-glucosidase hydrolyzes triterpene saponins in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 239:705-719. [PMID: 36683446 DOI: 10.1111/nph.18763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
Plants often protect themselves from their own bioactive defense metabolites by storing them in less active forms. Consequently, plants also need systems allowing correct spatiotemporal reactivation of such metabolites, for instance under pathogen or herbivore attack. Via co-expression analysis with public transcriptomes, we determined that the model legume Medicago truncatula has evolved a two-component system composed of a β-glucosidase, denominated G1, and triterpene saponins, which are physically separated from each other in intact cells. G1 expression is root-specific, stress-inducible, and coregulated with that of the genes encoding the triterpene saponin biosynthetic enzymes. However, the G1 protein is stored in the nucleolus and is released and united with its typically vacuolar-stored substrates only upon tissue damage, partly mediated by the surfactant action of the saponins themselves. Subsequently, enzymatic removal of carbohydrate groups from the saponins creates a pool of metabolites with an increased broad-spectrum antimicrobial activity. The evolution of this defense system benefited from both the intrinsic condensation abilities of the enzyme and the bioactivity properties of its substrates. We dub this two-component system the saponin bomb, in analogy with the mustard oil and cyanide bombs, commonly used to describe the renowned β-glucosidase-dependent defense systems for glucosinolates and cyanogenic glucosides.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Marie-Laure Erffelinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jan Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Shirley Marcou
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Francisco Javier Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Oren Tzfadia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Aldo Tava
- CREA Research Centre for Animal Production and Aquaculture, Lodi, 26900, Italy
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Monica Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
5
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
6
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|