1
|
Xiao D, Jiang Y, Wang Z, Li X, Li H, Tang S, Zhang J, Xia M, Zhang M, Deng X, Li HL, Liu H. Genome-Wide Identification and Expression Analysis of the HSP90 Gene Family in Relation to Developmental and Abiotic Stress in Ginger ( Zingiber officinale Roscoe). PLANTS (BASEL, SWITZERLAND) 2025; 14:1660. [PMID: 40508332 PMCID: PMC12157278 DOI: 10.3390/plants14111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/15/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
Ginger (Zingiber officinale Roscoe), valued both for its medicinal and culinary uses, can be adversely affected by abiotic stresses such as high temperature and drought, which can impact its growth and development. The HSP90 gene family has been recognized as a crucial element for enhancing heat and drought resistance in plants. Nevertheless, no studies have yet reported on the HSP90 gene family in ginger. This study investigates the HSP90 gene family in ginger and its crucial role in the plant's responses to abiotic stresses. A total of 11 ZoHSP90 members were identified in the ginger genome, and these genes were unevenly distributed across five chromosomes. Bioinformatics analyses revealed that the HSP90 proteins in ginger vary in size, ranging from 306 to 886 amino acids. These proteins are predominantly located in the cytoplasm, endoplasmic reticulum, and mitochondria. Notably, ten conserved motifs were identified, with variations in motif distribution correlating with phylogenetic relationships among the genes. Furthermore, the gene structure analysis indicated differences in exon numbers, which may reflect specialized regulatory mechanisms and functional differentiation among the ZoHSP90 genes. Cis-acting elements within the promoter regions of the ZoHSP90 genes were identified, and their involvement in stress responses and hormonal signaling pathways was revealed. These elements are critical for regulating gene expression patterns in response to environmental stimuli, such as methyl jasmonate, salicylic acid, and abscisic acid. The presence of these elements indicates that ZoHSP90 genes play significant regulatory roles in plant adaptation to environmental changes. Expression profiling of the ZoHSP90 genes under various abiotic stress conditions demonstrated tissue specificity and dynamic regulation. Different ZoHSP90 genes exhibited distinct expression patterns in response to low-temperature, drought, high-temperature, and salt stresses. This suggests that the HSP90 gene family in ginger possesses both conserved functions and species-specific adaptations to optimize stress responses. Overall, this research provides valuable insights into the molecular functions of the HSP90 gene family in ginger and lays the groundwork for future studies aimed at enhancing crop resilience through genetic engineering. The findings contribute to a deeper understanding of plant adaptability to environmental stressors, which is crucial for improving agricultural productivity in the face of climate change.
Collapse
Affiliation(s)
- Daoyan Xiao
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yajun Jiang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Zhaofei Wang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Xingyue Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Hui Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Shihao Tang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Jiling Zhang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Maoqin Xia
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Meixia Zhang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
| | - Xingfeng Deng
- Industrial Development Service Center of Baizi, Tongnan, Chongqing 402160, China;
| | - Hong-Lei Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.X.); (Y.J.); (Z.W.); (X.L.); (H.L.); (S.T.); (J.Z.); (M.X.); (M.Z.)
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart, Agriculture, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Huanfang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Cantila AY, Chen S, Siddique KHM, Cowling WA. Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera. Genome 2024; 67:464-481. [PMID: 39412080 DOI: 10.1139/gen-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
Collapse
Affiliation(s)
- Aldrin Y Cantila
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
3
|
Xu J, Liu S, Ren Y, You Y, Wang Z, Zhang Y, Zhu X, Hu P. Genome-wide identification of HSP90 gene family in Rosa chinensis and its response to salt and drought stresses. 3 Biotech 2024; 14:204. [PMID: 39161880 PMCID: PMC11330952 DOI: 10.1007/s13205-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04052-0.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yueming Ren
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| | - Yang You
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Zhifang Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yongqiang Zhang
- Xuchang Academy of Agricultural Sciences, Xuchang, Henan Province China
| | - Xinjie Zhu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Ping Hu
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| |
Collapse
|
4
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Song J, Sajad S, Xia D, Jiang S. Identification of F-box gene family in Brassica oleracea and expression analysis in response to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107717. [PMID: 37150011 DOI: 10.1016/j.plaphy.2023.107717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Unfavorable climatic conditions, such as low temperatures, often hinder the growth and production of crops worldwide. The F-box protein-encoding gene family performs an essential role in plant stress resistance. However, a comprehensive analysis of the F-box gene family in cabbage (Brassica oleracea var capitata L.) has not been reported yet. In this study, genome-wide characterization of F-box proteins in cabbage yielded 303 BoFBX genes and 224 BoFBX genes unevenly distributed on 9 chromosomes of cabbage. Phylogenetic analysis of 303 BoFBX genes was classified into nine distinct subfamily groups (GI-GIX). Analysis of the gene structure of BoFBX genes indicated that most genes within the same clade are highly conserved. In addition, tissue-specific expression analysis revealed that six F-box genes in cabbage showed the highest expression in rosette leaves, followed by roots and stems and the lowest expression was observed in the BoFBX156 gene. In contrast, the expression of the other five genes, BoFBX100, BoFBX117, BoFBX136, BoFBX137 and BoFBX213 was observed to be upregulated in response to low-temperature stress. Moreover, we found that the expression level of the BoFBX gene in the cold-tolerant cultivar "ZG" was higher than that in cold-sensitive "YC" with the extension of stress duration, while expression levels of each gene in "ZG" were higher than "YC" at 24 h. Knowledge of the various functions provided by BoFBXs genes and their expression patterns provides a firm theoretical foundation for explaining the functions of BoFBXs, thereby contributing to the molecular breeding process of cabbage.
Collapse
Affiliation(s)
- Jianghua Song
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China.
| | - Shoukat Sajad
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Dongjian Xia
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Shuhan Jiang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| |
Collapse
|