1
|
Wang Y, Zhang TL, Barnett EM, Sureshkumar S, Balasubramanian S, Fournier-Level A. Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 245:668-683. [PMID: 39550624 DOI: 10.1111/nph.20241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024]
Abstract
Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.
Collapse
Affiliation(s)
- Yu Wang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Tania L Zhang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | |
Collapse
|
2
|
Zhang J, Ning Y, Li J, Shi Z, Zhang Q, Li L, Kang B, Du Z, Luo J, He M, Li H. Invasion stage and competition intensity co-drive reproductive strategies of native and invasive saltmarsh plants: Evidence from field data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176383. [PMID: 39312978 DOI: 10.1016/j.scitotenv.2024.176383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Biological invasion poses a significant threat to biodiversity conservation and also results in substantial economic loss including the excessive cost of management to control it. Still, its impact on plant sexual reproduction strategies remains underexplored in natural settings. We conducted a field experiment on native Phragmites australis and invasive Spartina alterniflora in Bohai Bay and assessed plant size (aboveground biomass and height) and sexual reproduction (ear biomass, reproductive allocation, etc.) in conjunction with water and soil properties. The results showed that during the early stage of invasion, the two species declined in size and sexual reproduction, with S. alterniflora showing a lesser decline than P. australis. However, in the late stage of invasion, S. alterniflora maintained its plant size by reducing its investment in sexual reproduction. Moreover, significant reproductive allometries were demonstrated by S. alterniflora under different competition intensities. P. australis displayed heightened sensitivity to water properties and soil non-resource conditions, while S. alterniflora adapted its inherent traits and environmental tolerance. S. alterniflora allocated more resources to thriving as an individual, while P. australis prioritized reproduction by increasing seed production. Overall, this study revealed the reproductive strategies that invasive and native species employ in response to competition and environmental factors, thereby offering crucial insights for conservation and management efforts.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuanli Ning
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaxu Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zilin Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinze Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Longqin Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Binyue Kang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhibo Du
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Luo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China.
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Wu F, Chen X, Guo Y, Liu W, Zhang Y. Warming altered the effect of cold stratification on the germination of Spartina alterniflora across climatic zones in its invasive range. FRONTIERS IN PLANT SCIENCE 2024; 15:1491275. [PMID: 39659417 PMCID: PMC11628297 DOI: 10.3389/fpls.2024.1491275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Introduction Cold stratification has a pronounced influence on seed germination, climate change is altering cold stratification regimes across climatic zones. Therefore, it is urgent to explore how seed germination from different geographic provenances responds to these changes. The invasive plant Spartina alterniflora spans three climatic zones along the Chinese coast, such distribution provides a natural temperature gradient to explore how warming alters the effects of cold stratification on germination. Methods Spartina alterniflora seeds were collected from nine locations across three climatic zones in China from September to November in 2021. Seeds were planted in three common gardens with three latitude gradients of 21 °N, 28 °N, and 38 °N, after 0-month and 4-month cold stratification at 4 °C in November 2021 and March 2022, respectively. Each common garden simulated the natural temperature conditions and shield the plants from rain. Results Results showed that cold stratification led to explosive germination and rapidly reaching a plateau, shortened the germination time and improved the final germination rate. These effects were magnified from the high-latitude garden to the low-latitude one (i.e., warming). And the interactive effect of cold stratification and warming varied among provenances. For the subtropical and temperate provenances, the improvement in germination rate induced by cold stratification gradually increased from high-latitude garden to low-latitude one, while for tropical provenances, this difference progressively decreased. Discussion: Thus, our results indicated that subtropical and temperate provenances may migrate northward for adequate low temperatures to ensure high germination rate, because cold stratification can alleviate the negative impacts of warming on germination. For the tropical provenances, warming also suppressed the advantage that cold stratification provides in enhancing the germination rate, which may hinder their further spread southward. Our study contributes to understanding the responses of vegetation germination and recruitment across different climatic zones under global warming, providing insights for the distribution of cosmopolitan species and the management of exotic species.
Collapse
Affiliation(s)
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | | | | |
Collapse
|
4
|
Zhang D, Wang H, Liu X, Ao K, He W, Wang T, Zhang M, Tong S. Latitudinal patterns and their climate drivers of the δ 13C, δ 15N, δ 34S isotope signatures of Spartina alterniflora across plant life-death status: a global analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1384914. [PMID: 38882576 PMCID: PMC11176468 DOI: 10.3389/fpls.2024.1384914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Isotopic signatures offer new methods, approaches, and perspectives for exploring the ecological adaptability and functions of plants. We examined pattern differences in the isotopic signatures (δ 13C, δ 15N, δ 34S) of Spartina alterniflora across varying plant life-death status along geographic clines. We extracted 539 sets of isotopic data from 57 publications covering 267 sites across a latitude range of over 23.8° along coastal wetlands. Responses of isotopic signatures to climate drivers (MAT and MAP) and the internal relationships between isotopic signatures were also detected. Results showed that the δ 13C, δ 15N, and δ 34S of S. alterniflora were -13.52 ± 0.83‰, 6.16 ± 0.14‰, and 4.01 ± 6.96‰, with a range of -17.44‰ to -11.00‰, -2.40‰ to 15.30‰, and -9.60‰ to 15.80‰, respectively. The latitudinal patterns of δ 13C, δ 15N, and δ 34S in S. alterniflora were shaped as a convex curve, a concave curve, and an increasing straight line, respectively. A decreasing straight line for δ 13C within the ranges of MAT was identified under plant life status. Plant life-death status shaped two nearly parallel decreasing straight lines for δ 34S in response to MAT, resulting in a concave curve of δ 34S for live S. alterniflora in response to MAP. The δ 15N of S. alterniflora significantly decreased with increasing δ 13C of S. alterniflora, except for plant death status. The δ 13C, δ 15N, and δ 34S of S. alterniflora are consistent with plant height, stem diameter, leaf traits, etc, showing general latitudinal patterns closely related to MAT. Plant life-death status altered the δ 15N (live: 6.55 ± 2.23‰; dead: -2.76 ± 2.72‰), latitudinal patterns of S. alterniflora and their responses to MAT, demonstrating strong ecological plasticity and adaptability across the geographic clines. The findings help in understanding the responses of latitudinal patterns of the δ 13C, δ 15N, and δ 34S isotope signatures of S. alterniflora in response plant life-death status, and provide evidence of robust ecological plasticity and adaptability across geographic clines.
Collapse
Affiliation(s)
- Dongjie Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Hui Wang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Xuepeng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Kang Ao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Wenjun He
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Tongxin Wang
- School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Mingye Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Shouzheng Tong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
5
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
6
|
Hu G, He X, Wang N, Liu J, Zhou Z. The Impact of Water Potential and Temperature on Native Species' Capability for Seed Germination in the Loess Plateau Region, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:693. [PMID: 38475540 DOI: 10.3390/plants13050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Global warming is increasing the frequency and intensity of heat waves and droughts. One important phase in the life cycle of plants is seed germination. To date, the association of the temperature and water potential thresholds of germination with seed traits has not been explored in much detail. Therefore, we set up different temperature gradients (5-35 °C), water potential gradients (-1.2-0 MPa), and temperature × water potential combinations for nine native plants in the Loess Plateau region to clarify the temperature and water combinations suitable for their germination. Meanwhile, we elucidated the temperature and water potential thresholds of the plants and their correlations with the mean seed mass and flatness index by using the thermal time and hydrotime models. According to our findings, the germination rate was positively correlated with the germination percentage and water potential, with the former rising and the latter decreasing as the temperature increased. Using the thermal time and hydrotime models, the seed germination thresholds could be predicted accurately, and the germination thresholds of the studied species varied with an increase in germination percentage. Moreover, temperature altered the impact of water potential on the germination rate. Overall, the base water potential for germination, but not the temperature threshold, was negatively correlated with mean seed mass and was lower for rounder seeds than for longer seeds. This study contributes to improving our understanding of the seed germination characteristics of typical plants and has important implications for the management and vegetation restoration of degraded grasslands.
Collapse
Affiliation(s)
- Guifang Hu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyue He
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ning Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jun'e Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengchao Zhou
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Yuan J, Yan Q, Xie J, Wang J, Zhang T. Effects of warming on seed germination of woody species in temperate secondary forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:579-592. [PMID: 36970946 DOI: 10.1111/plb.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
Seed germination, a critical stage of the plant life cycle providing a link between seeds and seedlings, is commonly temperature-dependent. The global average surface temperature is expected to rise, but little is known about the responses of seed germination of woody plants in temperate forests to warming. In the present study, dried seeds of 23 common woody species in temperate secondary forests were incubated at three temperature sequences without cold stratification and after experiencing cold stratification. We calculated five seed germination indices and the comprehensive membership function value that summarized the above indicators. Compared to the control, +2 and +4 °C treatments without cold stratification shortened germination time by 14% and 16% and increased the germination index by 17% and 26%, respectively. For stratified seeds, +4 °C treatment increased germination percentage by 49%, and +4 and +2 °C treatments increased duration of germination and the germination index, and shortened mean germination time by 69%, 458%, 29% and 68%, 110%, 12%, respectively. The germination of Fraxinus rhynchophylla and Larix kaempferi were most sensitive to warming without and with cold stratification, respectively. Seed germination of shrubs was the least sensitive to warming among functional types. These findings indicate warming (especially extreme warming) will enhance the seedling recruitment of temperate woody species, primarily via shortening the germination time, particularly for seeds that have undergone cold stratification. In addition, shrubs might narrow their distribution range.
Collapse
Affiliation(s)
- J Yuan
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning Province, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, Liaoning Province, China
| | - Q Yan
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning Province, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, Liaoning Province, China
| | - J Xie
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - J Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - T Zhang
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning Province, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, Liaoning Province, China
| |
Collapse
|