1
|
Yuan T, Ren W, Zhang J, Mahmood M, Fry EL, Meng R. Combined Transcriptomics and Metabolomics Uncover the Potential Mechanism of Plant Growth-Promoting Rhizobacteria on the Regrowth of Leymus chinensis After Mowing. Int J Mol Sci 2025; 26:565. [PMID: 39859281 PMCID: PMC11766401 DOI: 10.3390/ijms26020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Mowing significantly influences nutrient cycling and stimulates metabolic adjustments in plants to promote regrowth. Plant growth-promoting rhizobacteria (PGPR) are crucial for enhancing plant growth, nutrient absorption, and stress resilience; however, whether inoculation with PGPR after mowing can enhance plant regrowth capacity further, as well as its specific regulatory mechanisms, remains unexplored. In this study, PGPR Pantoea eucalyptus (B13) was inoculated into mowed Leymus chinensis to evaluate its effects on phenotypic traits, root nutrient contents, and hormone levels during the regrowth process and to further explore its role in the regrowth of L. chinensis after mowing. The results showed that after mowing, root nutrient and sugar contents decreased significantly, while the signal pathways related to stress hormones were activated. This indicates that after mowing, root resources tend to sacrifice a part of growth and prioritize defense. After mowing, B13 inoculation regulated the plant's internal hormone balance by reducing the levels and signal of JA, SA, and ABA and upregulated the signal transduction of growth hormones in the root, thus optimizing growth and defense in a mowing environment. Transcriptomic and metabolomic analyses indicated that B13 promoted nutrient uptake and transport in L. chinensis root, maintained hormone homeostasis, enhanced metabolic pathways related to carbohydrates, energy, and amino acid metabolism to cope with mowing stress, and promoted root growth and regeneration of shoot. This study reveals the regenerative strategy regulated by B13 in perennial forage grasses, helping optimize resource utilization, increase yield, and enhance grassland stability and resilience.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Mohsin Mahmood
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, UK
| | - Ru Meng
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| |
Collapse
|
2
|
Zi N, Ren W, Guo H, Yuan F, Liu Y, Fry E. DNA Methylation Participates in Drought Stress Memory and Response to Drought in Medicago ruthenica. Genes (Basel) 2024; 15:1286. [PMID: 39457410 PMCID: PMC11507442 DOI: 10.3390/genes15101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether Medicago ruthenica exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species. Methods: We conducted methylome and transcriptome sequencing to identify gene methylation and expression changes in plants with a history of two drought stress exposures. Results: Methylation analysis showed that drought stress resulted in an approximately 4.41% decrease in M. ruthenica genome methylation levels. The highest methylation levels were in CG dinucleotide contexts, followed by CHG contexts, with CHH contexts having the lowest levels. Analysis of associations between methylation and transcript levels showed that most DNA methylation was negatively correlated with gene expression except methylation within CHH motifs in gene promoter regions. Genes were divided into four categories according to the relationship between methylation and gene expression; the up-regulation of hypo-methylated gene expression accounted for the vast majority (692 genes) and included genes encoding factors key for abscisic acid (ABA) and proline synthesis. The hypo-methylation of the promoter and body regions of these two gene groups induced increased gene transcription levels. Conclusions: In conclusion, DNA methylation may contribute to drought stress memory formation and maintenance in M. ruthenica by increasing the transcription levels of genes key for ABA and proline biosynthesis.
Collapse
Affiliation(s)
- Na Zi
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Huiqin Guo
- School of Life Science, Inner Mongolia Agriculture University, Hohhot 010010, China;
| | - Feng Yuan
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Yaling Liu
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Ellen Fry
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
3
|
Erofeeva EA. Environmental hormesis in living systems: The role of hormetic trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166022. [PMID: 37541518 DOI: 10.1016/j.scitotenv.2023.166022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
4
|
Yin J, Ren W, Fry EL, Sun S, Han H, Guo F. DNA methylation mediates overgrazing-induced clonal transgenerational plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165338. [PMID: 37414175 DOI: 10.1016/j.scitotenv.2023.165338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.
Collapse
Affiliation(s)
- Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China; Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot 010016, China.
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Siyuan Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huijie Han
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fenghui Guo
- Industrial Crop Institute, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
5
|
Wentao M, Shiming T, Le Q, Weibo R, Fry EL, De Long JR, Margerison RCP, Yuan C, Xiaomin L. Grazing reduces plant sexual reproduction but increases asexual reproduction: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162850. [PMID: 36931513 DOI: 10.1016/j.scitotenv.2023.162850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Grazing affects grasslands worldwide. However, the global patterns and general mechanisms of how grazing affects plant reproductive traits are poorly understood, especially in the context of different climates and grazing duration. We conducted a meta-analysis of 114 independent grazing studies worldwide that measured plant reproductive traits in grasslands. The results showed that the number of tillers of plant increased under grazing. Grazing did not affect the number of reproductive branches of forbs, but significantly reduced the number of reproductive branches of grasses. Grazing increased the number of vegetative branches of all plants and reduced the proportion of reproductive branches. Grazing significantly reduced the number of flowers in forbs. Seed yield in the two plant functional groups was reduced compared with no-grazing. Under grazing, the sexual reproduction of grasses decreased much more substantially than that of forbs. This may be due to biomass allocation pattern of grasses under grazing (i.e., belowground versus aboveground). Under grazing, plants tended to adopt rapid, low-input asexual reproduction rather than long-term, high-risk sexual reproduction. This study represents the first large-scale evaluation of plant reproductive trait responses under grazing and demonstrates that grazing inhibits sexual reproduction and promotes asexual reproduction. The effect of grazing on plant sexual reproduction was influenced by grazing intensity, mean annual precipitation, and grazing duration. These results will assist in the development of sustainable grazing management strategies to improve the balance between human welfare and grassland ecosystem health.
Collapse
Affiliation(s)
- Mi Wentao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tang Shiming
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Qi Le
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ren Weibo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group)Co., Ltd., Hohhot 010016, China.
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Jonathan R De Long
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Reuben C P Margerison
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Chi Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Liu Xiaomin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
6
|
Mugloo JA, Khanday MUD, Dar MUD, Saleem I, Alharby HF, Bamagoos AA, Alghamdi SA, Abdulmajeed AM, Kumar P, Abou Fayssal S. Biomass and Leaf Nutrition Contents of Selected Grass and Legume Species in High Altitude Rangelands of Kashmir Himalaya Valley (Jammu & Kashmir), India. PLANTS (BASEL, SWITZERLAND) 2023; 12:1448. [PMID: 37050074 PMCID: PMC10097080 DOI: 10.3390/plants12071448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023]
Abstract
The yield and nutritional profile of grass and legume species in Kashmir Valley's rangelands are scantly reported. The study area in this paper included three types of sites (grazed, protected, and seed-sown) divided into three circles: northern, central, and southern Kashmir. From each circle, three districts and three villages per district were selected. Most sites showed higher aboveground biomass (AGB) compared to belowground biomass (BGB), which showed low to moderate effects on biomass. The comparison between northern, central, and southern Kashmir regions revealed that AGB (86.74, 78.62, and 75.22 t. ha-1), BGB (52.04, 51.16, and 50.99 t. ha-1), and total biomass yield (138.78, 129.78, and 126.21 t. ha-1) were the highest in central Kashmir region, followed by southern and northern Kashmir regions, respectively. More precisely, AGB and total biomass yield recorded the highest values in the protected sites of the central Kashmir region, whereas BGB scored the highest value in the protected sites of southern Kashmir region. The maximum yield (12.5 t. ha-1) recorded among prominent grasses was attributed to orchard grass, while the highest crude fiber and crude protein contents (34.2% and 10.4%, respectively), were observed for Agrostis grass. The maximum yield and crude fiber content (25.4 t. ha-1 and 22.7%, respectively), among prominent legumes were recorded for red clover. The highest crude protein content (33.2%) was attributed to white clover. Those findings concluded the successful management of Kashmir rangelands in protected sites, resulting in high biomass yields along with the considerable nutritional value of grasses and legumes.
Collapse
Affiliation(s)
- Javed A. Mugloo
- Division of Silviculture and Agro Forestry, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir 190025, India; (J.A.M.); (M.u.d.D.); (I.S.)
| | - Mehraj ud din Khanday
- Division of Soil Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir 190025, India;
| | - Mehraj ud din Dar
- Division of Silviculture and Agro Forestry, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir 190025, India; (J.A.M.); (M.u.d.D.); (I.S.)
| | - Ishrat Saleem
- Division of Silviculture and Agro Forestry, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir 190025, India; (J.A.M.); (M.u.d.D.); (I.S.)
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (A.A.B.); (S.A.A.)
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (A.A.B.); (S.A.A.)
| | - Sameera A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (A.A.B.); (S.A.A.)
| | - Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia;
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India;
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, 1797 Sofia, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut 1302, Lebanon
| |
Collapse
|